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1. Introduction

The purpose of this paper is to treat the limiting distribution and
the fluctuation of the sum of identically distributed positive random
variables without mean, which frequently appear in the theory of
recurrence time.

Let X,, X,, --+, X, be positive random variables without mean, and
F(x) be their common distribution function, and let C, be such that

1—F(C,.)~l (for large n). Then the sum
n

S, =X +X,+---+X,

has a stable limiting distribution, if and only if lim % converges

)—»00
» n

(Theorem 3). This statement is a special case of the results of Doeblin

and Boboroff¥’. But, in case where lim %"—”=oo for 2>1, S, shows a

n

certain stability and we can consider a limiting distribution of S,
(Theorem 2). This case contains the distribution of the recurrence time
for the return to the origin in a two-dimensional random walk. When

lim (’% does not converge, we can also give the fluctuation of S, com-

n

paring with »n* (s> 1) (Theorem 4).

The tool of the investigation is the theory of Laplace transformation
which is known to be useful for the treatment of positive random
variables (c.f. Kawata [5]).

2. Lemmas

In this section we shall state some fundamental properties of the
Laplace transforms of distribution functions.

1) In the Boboroff’s case, the definition of {Cn} must be a little modified. (c.f.
theorem 3).

169
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LEMMA 1. Let F(zx) be a distribution function of a positive random
variables, and

F(t)= S: o~ dF(x)

p(x)=— log f(¢) ,
Then ¢(t) is a positive concave monotone increasing function and lim ¢(t)=
-0
#(0)=0.

LEMMA 2. Let F(x), ¢() be the same as in lemma 1. Then we

have go(t)~tg:(1—-F(x))e"°dx for mail t.

PROOF. ‘ S(@)=e*P=1—o(t)+,(e(?)) .

On the other hand, by partial integration we get
f(t)=1-—tr(1—F(w))e"”da: :
0

This proves the lemma.

LEMMA 8. Let {F,(x)} be a sequence of distribution functions of
positive random wvariables, f,(%) =Sme"‘dF,,(x), and ¢,(t)=— log f.(%).
0

Then lim F,(x)=F(x) at the continuity point of x is equivalent to

lim £,()=F(t)  0<t<eo,

where F(:v)=re‘“dF(x) and lim F(x) can be smaller than 1.

0 >

This lemma is easily proved by the following two facts;
(1) {F.(x)} is a uniformly bounded, normal family,
(2) the inverse of the Laplace transform is uniquely determined.

3. Limiting Distribution of S,

Let X, X,, --+, X,--+ be a sequence of positive random variables
with the common distribution function F(x). Then S,=X,+ .-+ X, has
the distribution function F™(x) such that F™=F(x)*---xF(z). Now we
define the stability of S, as follows.
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DEFINITION. S, is called stable if and only if there exists a positive
increasing sequence of numbers {C,} such that

lim F(g) - G(x)

n—rco n

where 0<G(x,)<1 for some x,>0. (The case limG(x)<1 is admitted).

T—o0

Since we are interested here mainly in the random variables without

mean, the stability of the type, such as lim F("’(w—gq—”) exists for some

n

sequences {C,} and {a,}, will be out of our consideration. On the other
hand our definition is a little more general than the ordinary one; in the
point that it admitts the case lim G(x) <1.

THEOREM 1. If S, is stable and {C,} is such as in the above definition,
then

(1) 1im Cm  exists
or
(2) lim $m— for any A>1.

Nn—>00 n

REMARK. We can define a fixed monotone function C(z) for all
positive value such that C(r)=C,. In the above theorem C,, means
C(n2).

PrROOF. By lemma 3, the condition that F"”(é’_) —G(z) and 0<G(x,)

<1 for some x,>0 is equivalent to ngo(-ct,—)» #(t) and 0 < p(t)< o for

0 <t < oo, where ¢(t)=— log(S:e""dF(ac)) and p(t)=— log (S:e"”dG(w)),

If li_m%‘=K<Ti_ﬁ%'—"=L for some 2>>1 (L may be equal to ). For

n n

any K,, L,; K<K, <L, <L, we can take some subsequences {n;}, {x,}.
Such that

C.
(3) C“<m ny >
ng
C.,
(4) 2> L n,>m, .

Ca,
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Therefore

1 t o 1s C"u\ . t
H(t)= 7}‘131 m¢(—c—m)— lim nm( Coi Con )
1 ¢ 1

<1 fmna (K )= Kt),
= - limn, e Co ,1‘"( i)

ie.,

(5) FOESE R

and similary
(6) p(t)g}pwlt) for t=£0.

Therefore we have from (5)

(7) #(8) <Ap(t) < p(Kit)
and from (5) and (6)
(8) L) < p(Kit) where Kt <Lit.

As p(t) is monotone increasing, it holds that

p(8)=p(Lt)=p(K,t) for Kt <s<Lt.
Now, ¢ is arbitrary, so we have
(9) pt)=C 08T
which contradicts (7). q.e.d.

COROLLARY. When S, is stable and 1im%@=oo, then we have p(t)=

n

constant.
PROOF. In this case L= m%@=oo. By (6) we then have u(Lt) <

Ap(ty for arbitrary large L,. Therefore g(t) is bounded. From this
together with the fact that ,(t) is monotone and convex, we have p()
= constant.

THEOREM 2. If S, is stable and lim %ﬂé=oo, then, taking C,—C,,

Jor some positive constant k, we have
(i)  PAS,<Cp}—>e =
or P.{C,,<8,<C,,} —>elz—g-1lv (n— o) for =z, y>0.
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(i) 1—F(U,,)~% .

Conversely, if 1—F(E',.)~% and lim%‘l‘=oo for any A>1, then S, is

n

stable with respect to {C,}.
First, we prove the following lemma.

LEMMA 4. When
(10) 1—nam<§ for n>>n,

and lim Cm_ o for any 1>1, then we have

N—rco n

(1) S:"(1—F(c,.z))dw<§%ﬁ for large n.

PrRoOOF. We divide the integral into three parts:

I,,=So°(1—F(an))dw= So Cn +KZ}SC(ZM) +Sc(!2‘)

From (10) we have

r+1
a2)  1-F(0(4))<E -k for 0<<r <k=| Zlogn| and n>mi.

On the other hand, lim gl"i=0, therefore %"i<e for n >mn,. Thus we

()

n n

have - e for 0<r<k and n>mn}, or
(%)
C(L)
21'-(-1
(13) W< e 0<r<k.
Especially
ol "
(14) (2k+1)< ek+1 <n%‘°3:' .

C(n)
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Therefore

Inéc(é%)Jr & Ko 0(722?)+ 2, x

C(n) 1 n Cn) n "

< {n“%“’"” +2K S (2e) + 2x0K}

r=1

IA

1
n
%{n'”+4Ke+2a:oK} for large n,

where p=—<1+ »;4 log2e)>0 (for sufficiently small ¢). Consequently,

for sufficiently large n we have

I, <3a;':k . q.e.d.

ProoF oF THEOREM. By the corollary of Theorem 1, we get u(t)=Fk,

therefore lim n¢(§)=k for 0 <t< . Putting C,=C,,, we have

n—>o0

(15) lim n¢(é—>= ]} lim nkga(g )=1
e n nk

By the same argument, we have

. t 1
16 l —_l= .
(19) limne( 5 )=
If we define F\(x) such that F,(0)=0, F,(x)=e¢** >0, then

l=re-udm(x)
P 0

Therefore, by Lemma 8 we have

lim Fm(ai) —Fy(x)

e nx
or

P.{S,<Cun} —»>e*
which proves (i).

Next, we have <p(t)~tg:(1——F(x))e""dw by Lemma 2. On the other

hand ngo((%)—»l or go(é—)»v;lz- for ¢>0. Thus we obtain

n n
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17 711-~ ét S:(l _F(@))e ondz .

n

From (17) for any ¢ >0 we have

1+e>§:n(1—F(%?’_))e—zdz n>

ggo n(l —F (%ﬁ)) erda > n(l—F(C,.))So o-*dz
>n(1-F(C,))(1—e™) for any large ¢ (n > n(t))

Therefore

(18) 142¢ >n(1-F(C,)) n>n,.

From (18) it is evident that the conditions of Lemma 4 is satisfied, and
we have

§”°(1_F(a,»dxg§£f;@ .

It follows that from (17)

(1—e) <t S: n(1—F(Co))e~das

gtS:n(1—F(6,,x))dm+n(1—F(En))Sfte-"dx
< 3Kt+n(l—F(C,))e*

for any small ¢ and »>n(t). Then we obtain (19) 1—2¢ <n(1—F(C,))
n>mn;. From (18) and (19) it follows that

1-FC)~ L
) n
which proves (ii).
Conversely, if
1 - an
(19) 1—F(C,,)~; and lim o= for any 1>1,

then the condition of Lemma 4 is satisfied (for K=2). That is,

Crai-e)

(20) nso Or (1= F(C )i <3K§1‘C‘71:2 .

n
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(21) b’is (1—F(2))e 0n dor— nS (1= F(Cyy))e-"dac

Crii-ey  Crase)

0 Cn(l—e) Cn(1+s) '

C, Cn
From (20) we have

Ch1-¢) QM
@ n| * a-FCaperi<n " (-FCape<ak G,
0 0

n

and

Cn(1+e)
|

(23) S” (A—F(C,a))eda <S esds—1e™ C,
Cra+ Cra —e) t
o Co

On the other hand, when C"(‘;} 0 <l C’é}"’ , we have from (19)

n n

1-2:<n(1—F(Cprx)) < 1+2¢ for sufficiently large n.

Therefore
Cn(1+z) Cn(1+e) Cn(1+e)
Cn —xzt C” -zt < S e~
1—- Ze)g o e gnS oI FCYr=dn < (1429 [ % erda
Cn Cn c,
or
1 ___CnC(l—e)t _Cnaze, C"é—“e)
— — n — Cn "
@) -2 B E
C,
__(i(l—-_z) __Cn(1+8)
gi (1+2e)(e Ci —¢ G )
Since Cna=o _, ¢ and C'gﬂ) —w (n— o), from (21), (22), (23) and (24)
we have
1;25 g_g 1— F(C,.x))e‘v—ndxs.l*;zs for n>n(t).

Therefore we get

lim S (1—F(@))e tndr=1,

n
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or

lim nga(—CL)=1 for fixed t540,

n—>o0

which means by Lemma 8

lim F<n>(ci)=1rl(z) :

n—>oco n
This proves the converse. q.e.d.

When lim g’“< o, the problem is solved as a special case of

Doeblin’s theorem (S,>1 in theorem 3) or Boboroff’s theorem (S,=1
in Theorem 8). Therefore we only state the results (c.f. Doeblin [1]

and Kawata [5]).

THEOREM 3. If lim %’*"=KA 18 finite and S, is stable, then we have

n~rc0 n

KA=1'° 8021.
Cm—Ky Kami (6,21)

i) for s, >1, S, is stable with respect to {C,} if and only if

Further, under the condition that lim

1——F(C,,)~% Sor some positive k.

il) for s,=1, S, is stable with respect to {C,} if and only if

2 ra-Fepa—t (O0<k<eo)
n 90
n(l—F(C,))—0 (n—> ).
In these cases, the limiting distribution of gl 8 a stable law of index l.
n 0

ExAMPLE. In the two-dimensional random walk, the moment generat-
ing function P(s) of recurrence time for the return to the origin is
given by the following relation

-1
U= _ps)

where

U(s)= iuns" and u,,~?1ﬂ; . (c.f. Feller [2] [3])



178 M. MOTOO

Therefore,

U(s)~2%log(lls) for s> 1,
and

1—P(e-)~2r_ 1 - for ¢ —0,

log "
or
o(t)~2r where ¢~“®=P(e-?),
log =

t

Therefore, we have

lim W(ef—m)=1

n—»c0

Thus, from Theorem 2 it follows that
P, {e < S, < ™3} =¢-12—g-1l¥

2mn
log S,
And

or is distributed according to an exponential distribution.

1 ——F(e"")~;1; .

4. The Order of the Fluctuation of S,

When S, has no limiting distribution, we can also estimate the
fluctuation order of S,. For this purpose, we shall compare it with
function g(n)=n* (s>1).

THEOREM 4. Let 1—F(C,)~1 |
n
and

8,= inf {sgl, lﬁn_%;t=0}

8,= sup {sg 1, lim £"7=oo} (81 =8, 8,, 8, may be infinity)
— ns
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Then, we have

i) for s>s, and any >0, with probability one S,<en® holds
except at most finitely many n.

i) for 1<s<s, and any K >0, with probability one S,>Kn’
holds except at most finitely many n.

iii) 4f 8,>>s,, then for s,>>8>>s, there exist some fixed subsequences
{n;} and {n} such that with probability one S,,~>eni holds (n, in {n})
except at most finitely many n;, and with probability one S, < Kn] holds
(n; in {n,}) except at most finitely many n,.

Proor. For s>s;, we take s’ such that s>s'>>s,. Then

fim S —0 and 1—F(n*')§1—F(C’,,)~% for large n.

Therefore, we can choose a number z, such that

2

(25) 1-Fr)<—; for = > x,,
xs
from which it follows that
- _zl_ had e_i;ts Zp L s_L
S(I—F(x))e n« da:<2g " G+ So <o Vaw,  for n>m,.
xy v
Therefore we have
' R T s

(26) e \m/>emtin where 8=?—1>0.

If we put G™(x) as a distribution function of L’S;:' , then we have

G (@e) + G (we) = r e~ dG(z)=e "*(ne) > g0
0

Putting /¥ =n%?, we get for sufficiently large n.

8

(27) GM(we) > *

or

(28) P {S, > en'} < 3n“g‘=3n‘5’ for n > n(e, 8).
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But the event S, > en® means Sy > 8, > 20-1¢ for 271 <{n < 2".
Therefore

PLY[S,>en'l} SP,{U[Sr> 2] St 3 3. 22 < oo

where r, is such that 2% > n(e, s). That is,
(29) P, {Tm S, > en*]} =0

which proves (i).
On the other hand, for 1<(s<(s, applying the same method as
above we have for s <8’ <s,

(30) 1-F)> 1, or 1-F@)> 2;1‘ o>,
therefore,

S:(l —F(m))e”:a da™> t:—_l#% for large =,
and

) gt 3> 0.

It followé from this that
(31) G k)oKt < S:e"‘dG("’(:c) <& 5>0.
Putting t=n"%, we get for n > n(K, ¢)
32) P, (S, < Kn*} —G™(Kz) < e~ <5> g) .

and Ze‘s"sl converges. Therefore we have by Borel-Cantelli’s theorem

P.{fm[S, < Kn']} =0 ,

which proves (ii).
For 8, >s8>s, we take s’,8” such that 8,>8">s>8>s,. Then

we determine the subsequences {n;,} and {n,} such that

Cn‘

lim 7 =0

n Pl n;

(33)

lim O — oo
A
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Since for {m,} (25), (26) and (27) hold (if we substitute n, for =), we
can easily prove the first part of (iii).

Similary, for {n,} (30), (31), and (82) hold (if we substitute n, for
n), and the 2nd part of (iii) is easily verified.
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