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1. Introduction.

A simple method of fitting a straight line when both variables are
subject to error was proposed by Wald [1] in 1940. The purpose of the
present note is to give some practical device to that method and its
application. If we have N observations (z;, ;) (=1, 2---, N), the us-
ually employed method of least squares determining the coefficients of the
straight line, as is known, gives two different lines according to whether
x or y is regarded as the independent variable. Concerning this much
has been discussed in various papers, for example, in C. Eisenhart [3]
and J. Berkson [4]. Here, we shall begin with considering the problem

N
by Wald’s method. Under some conditions he took up b= b, _ > U

b1 {=m+1

—:Z{yi,) / (éﬁf—jﬁx’) as a consistent estimate of 5 in Y=a+ X, and
this was given a certain modification by Bartlett [2]. He classified the
observations into three groups so that when the observations are ar-
ranged according to order, the first and last groups consist of the first
and last k& terms, respectively, where & denotes the integer nearest to
N/3, while Wald classified the observations into two groups. To de-

termine the slope the mean coordinates %, 7, and &, ¥, for the two ex-

treme groups were used, i.e., b'= ?ﬁg_’l— was used. Bartlett’s idea is that
x3—$1

in the particular case where # has no errors and takes only positive
integral values 1,2, ---, 2 + 1(N=2[+1), the value of k equal to (2/+1)/3
maximizes the relative efficiency of & between the variance for the
method of least squares and the variance by this method.

In order to examine such a situation between their statistical con-
structions we shall take some actual examples. The following tables
show coefficients b,.,, b and b of the straight lines of the yield point
Y (unit: kg/mm?®) on the ultimate tensile strength X (unit: kg/mm?) of
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iron materials for ferro concrete given by the method of least squares,
the Wald’s method and the Bartlett’s method.

[25 mm¢; diameters at a section]
b,..—0.600, b=0.583, b'=0.584,
N=440, correlation coefficient =0.85.

N * \ 20 50 100 150 200
b ] 0.56 0.60 0.60 0.62 0.63
b 1 0.63 0.64 0.60 0.66 0.64

* We selected N’=20, 50, 100, 150, 200 observations at random from a group
of N'=440 observations.

[16 mm¢; diameters at a section]
b,..=0.79, b=0.76, b=0.71,

N=560, r=0.89.
N 20 50 100 150 200
b | 0.74 0.75 0.76 0.77 0.71
b’ \ 0.85 0.80 0.77 0.74 0.67

[9mm¢; diameters at a section]
b,..=0.68, b=0.69, b’=0.70,
N=1724, r=0.86

N | 20 50 160 150 200
b ' 0.76 0.78 0.76 0.79 0.78
b | 0.73 0.78 0.73 0.77 0.77

Kk

Those examples seem suitable for determination of the slopes b and
b’. However, the problem to determine boundary points of this group-
ing precisely in the mathematical sence remains to us. A similar problem
was discussed by Neyman and Scott [6].

2. A fitted straight line and some measure of trend.

Let us take a set of pairs of observed values (z;, ¥;), =1, 2, ---, N.

Denote the expected value E(x,) of z; by X, and the expected value
** These trials were carried through by Miss Kazuko Aihara and Miss_Eiko Ozaki.
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E(y;) of y, by Y,, i=1,2, ---, N. We shall call X, the true value of
x;, Y, the true value of y, and accordingly consider z,—X,=e¢, as the
error in the i-th term of the X-set, and y,—Y,=¢; as the error in the
i-th term of the Y-set. Further assume that a single linear relation
holds between the true values X and Y, i.e., Y,=a+pX,, and all the
random variable ¢, have the same distribution, all ¢; also have the same
one, and E(ee,)=0, E(eie))=0 for i+j, E(ec;)=0, (¢=1, ---, N).

Following Wald’s method, if we take the statistic b= 2t —=%—0:
1 T,— T

as an estimate of f, it can easily be seen that

@ (22 -2 %)

providing (Q) <1, where, for the sake of simplicity, we assume
(173—271

that N(C>2) is even, and %, %, %, & and Z,,7,, &, & denote the arithmetic
means of the observed values « and y, and the error ¢ and ¢ on the
first half group and the second half group in the ordered arrangements
2, < 2, <+ <2y, when m=N]|2, i.e.,

— 1 2 - 1 2 = 12
w1=42mt ’ yl__zyi ’ €1=;2€c ’
m i=1 m i=1 m i=1
— 1 m ’
=3
m i=1
= 1 & = 1 & - 1 &
and Bo=—" X Yy ="+ S Yo E=— >, ,
m i=m+1 m i=m+1 m t=m+1
-~ 1 & .
Eg=—— Z &
m it=m+1

Thus, if we take f’i=a+bXt as estimates of Y;’s and write yi—f’i
by w,, we have

(2.2) - w,=y,—(a+BX,)—F + ¢

_y(‘E;—E;)—ﬂ(EZ—EI) (1_ §—¢E ! . (X —7)
X,-X, XX ‘
Now, when we obtain a further observation (z, ;) and put w;=y; -Y,,

the expected value of w; for fixed y; is given as follows:
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(2.3) Ew)=y,—(a +ﬂX2)—ﬂ(X5—X){£( )_?__.'EX )2
_I_E(;l:;z{ )3+...}
=i (X + | (X=X | A |

(X-X) X-X) (X5-X)
-] B _ B@ B }]
TN E STy (X-X) (X-X)

The result shows that the influence of this bias is small as far as X fall
between X, and X,, and if X; has no error, the result is, of course,
unbiased.

Now, let us introduce the random variable Z such that

(2.4) Z— { 1 when y,—(a+8X)>0
0 when y'—(a¢+8X;) <0

and consider the problem to estimate the probability p that Z=1. For this
problem we take further n observations (z}, %), -+, (@, ¥,), and compute
w; to every («i;y;). When we obtain n* positive values of w;, p=n*/n
will be appropriate for an estimate of p, provided that the terms of the

higher order than the second moment of (——) may be negligible.

Further, put y,—a—p(X,—X)=7,.. We then have
2
@5 Efw—n}-E{@-p

s BmD—FE-) (1 B2E ) (x_x)

X Xl Xz - Xl

If the contribution of the terms of the higher order than the second
moment of (¢,—&,)/(X,—X,) is negligible, we have
E[bi(b— 5)2] _

2.6 E LA/} —E5—€2 e — (X, —X),
(2.6) fo =P+ EE—fiy e o (K= )

for in this case we have E[¢(5,—&,)=[E(s}) — E(&})]/2=-0, and E[#'(s;—&,)]=0.
Further, if ¢, ¢ have the Gaussian distributions with zero mean and
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variance o2 and ¢, respectively, we obtain

2. oyt fo; (X, — Xy

@2.7) Efw,—p 22420 11 % b

Let F(y), G(¢) and f(y), g(¢) denote the distribution functions (dist.
f.) and the density functions (dens. f.) of 7 and &, respectively, and
put w=7n+¢ We shall consider w for a sufficiently large value of N,
and suppose g(x) to have the Gaussian distribution with zero mean.
Then ¢(&) is symmetric.

If we denote the distribution function of w=7+¢ by F(x), we have

(28) Fay={  [rou@ar= Fe—soen.
n+Esz -
In the following we shall restrict ourselves to the case where the dist.

f. F(x) satisfies the conditioni"(w)=§1 Fl@—8&)g(e)de=f(x). Now, sup-

pose, we have n values of w and among them n, values are less than
z, one is between x and x+dx, and the remaining n—mn,—1 values are
greater than x+dx. Then we have

n 3 n(1—F n-n -1
nl(n—m—1)! (F(z)y"(1—F(x))

<" re—ou@deds.

(2.9) o(z)dz =

When we introduce a new variable r by the substitution
r=nF(x),

we have 0 <r<n, and the dens. f. w*(z) of the new variable is
* _ ,n_l L ny __T_ n—nl—l
(2.10) w*(7) ( . )( n) (1 n) .

Now let us consider the relation between F(x) and (7). How-
ever, the origin of 7 is unknown for us. Thus we shall select any y-
axis parallel to &-axis and determine the origin on it, and if the origin
of 7 agrees with the origin of y, we have

@1) A= Fe-9eed=|" Fa+oed—Fe),

or
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)= | F(-a-00@Mi=|" F(~z+0@dz=F(~a),

since g(¢) is symmetric. But when we can assume that the origin of ¢
1s at —y, or y,, and 7 has its origin at y, or —y,, Where % =0, then
F(2y0) changes to F(O) and F(2y0) remains unchanged or F( —2,) changes
to F(0) and F( 2y,) remains unchanged, and we have

(2.12) F(2y,) = F(0)=F(0),

F(—2y,) < F(0)=F(0) .
According to this result, we have only to consider our problem for the
interval (—y,, %) such that the probability that the origin of & falles into

the interval has a sufficiently large value. Now if we assume F(—(x—¢&))
=1-F(x—¢), i.e., F(p) is symmetrlc with respect to its orlgm we have
F( z)=1— F(a:) and F( r)=1— F(w) Thus if F(z) or F(a:) is not sym-
metrie, F(») is not symmetric, and if the origin of ¢ is found and F(O)
is symmetric, we get F:‘(0)=F(O). Thus we can attain our purpose by
considering F‘(x) at—2y, and 2y,.

Our practical procedure was as follows. We inscribe two lines of the
result computed according to the following procedure in the scatter dia-
gram ploted to show the relation between the observations x and .

b(b—p'N—-2
V(sy) + P8y —
2 degrees of freedom (see Wald [1]),

has the Student’s ¢-distribution with N—

Since

\2 — 1 & =)\ z _m)

@ =—AS@-zr+ @ -z},

(s;)2=%{i(yi—yl)z + Sw-wr},
DGR TR AR VERE SIORE AT

and, therefore, has assymptotically the Gaussian distribution for a
sufficiently large N, we obtain the two lines which determine the values
of B with the desired confidence coefficient. Then count the numbers
n;, n, of observations on y which will fall in the above sides of those

two lines, respectively., We further put pl=% and p2=% and take
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(pl—-ko,/ %(%)2 , p2+k.,'/ %_(%)z) as a confidence interval for our

purpose.

3. Numerical Examples.

The following examples show some results tested on the compressive
strength and the tensile strength by test-pieces made by the mortar.
The amount of cement used for the testing was weighed out of the
total with the prescribed proportion when it was bought from the
maker, and several numbers of test-pieces were produced from mortar
(water cement ratio 659, cement/sand=1/2) that contained this cement,
and the test-pieces were kept in water, and examined at the 3rd-day,
7Tth-day and 28th-day, respectively.*** (We were furnished with these
data from the material test room in Nippon Telephone and Telegram
Public Coorporation.)

{ The compressive strength> N=285
X; strength at the 3rd-day
Y; strength at the 28th-day (unit: kg/em?)
- arithmetic mean $=118.59, 7=3882.14,
standard deviation s,=22.61 s,=38.11.
b, ,=0.520, b=0.599, r=0.308.

{ The tensile strength >
X; strength at the 3rd-day,
Y; strength at the 28th-day (unit: kg/em?)
arithmetic mean z=29.42, 7="73.61,
standard deviation s,=5.65, 8,=8.78,
b,.=0.834, b=0.842, r=0.537.

When we designate by ¢, the critical value of ¢ corresponding to 959
probability level, the following results are obtained for B* and ¥, that
is, for the compressive strength between the 3rd-day and 28th-day,
(0.348, 0.854), and for the tensile strength, (0.654, 1.032).

***  All numerical works were done by Miss Kazuko Aihara and Miss Eiko Ozaki.
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Compressive strength. Tensile strength.
p1=N1/N=0.52, p,=N,»/N=0.56 P1=Ni/N=0.44, p,=N,/N=0.47
Maker’s name m/n ‘ e/ ! [ n/n i nsfn
0 0.58 0.63 | 0.56 . 0.63
1 0.63 0.65 | 0.26 0.32
T 0.28 0.40 [ 0.33 0.49
N 0.50 | 0.56 ‘ 0.52  0.56
U 0.54 ‘ 0.58 | 0.70 | 0.71

The similar work is performed for the results between the 7-th
day and the 28-th day. (B¥, B¥) is (0.0338, 0.639) for the compressive
strength between the 7th day and the 28th day and (0.431, 0.800) for
the tensile strength.

Compressive strength. Tensile strength
p1=0.47 02=0.50 p1=0.47 2=0.48

Maker’s name n/n nsf/n ‘ n/n i na/n

0 0.52 0.61 i 0.55 0.58

1 0.54 0.58 | 0.18 0.28

T 0.23 0.30 | 0.40 0.60

N 0.48 \ 0.52 I 0.52 0.60

U 0.53 } 0.58 075 0.80

The above tables seem to show the certain tendency of behaviour
on the consolidation of the manufactures of the various makers. For
example, if we use at the same time the following table of their mean
strengths about each maker’s goods, we can possibly guess from the
tables of compressive strength that 7' maker’s goods become solid quickly,
and from the tables of tensile strength that U maker’s goods have the

Sample mean strength of each maker’s manufactured goods,
unit: kg/mm?

Compressive strength Tensile strength
Maker’s 3rd-day | T7th-day | 28th-day = 3rd-day | 7th-day | 28th-day
0 123.57 239.99 392.57 31.11 53.90 78.40
1 103.75 215.49 375.30 24.60 45.49 67.20
T 134.74 253.59 381.24 32.37 53.58 75.37
N 118.60 228.82 382.16 29.46 50.18 73.67
U 122.13 229.83 391.52 30.98 51.82 78.82
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highest firmness against the brittleness among these mak ers. We
can regard these properties of O and U as excellent among them.
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