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1. Introduction

The matrix inversion by Monte Carlo method is deviced originally
by J. von Neumann and S. M. Ulam and developed by G. E. Forsythe
and R. A. Leibler [1],[2], [3]. In this paper we shall present an appli-
cation of the so-called ¢ splitting technique’” to the matrix inversion
by Monte Carlo method [4]. The mean number of random digits requir-
ed for one particle history and its variance are also given. The more
general results about the splitting technique will be presented in the
forthcomming paper.

2. Transformation of simultaneous linear equation

In this section we shall show the following :
LEMMA.
Every simultaneous linear equation can be reduced to the form

I—-8S)x=c

where S is a positive definite matrixz with the largest eigenvalue less than

1 and with M=max3|s;| less than 2, and x, ¢ denote unknown and
¢ 3

known wvectors, respectively.

PROOF. Given a simultaneous linear equation

Az=Db

we can transform it into the form
A’Az=A'b

where A’ denotes the transposed matrix of A.
Denoting B=A'’A, §=A’b, we have

Bz=¢

Ve, 0

with positive definite B. Then there exist matrices U and . 1/r
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Vb, 0 ve, 0 :
such that B= . U . . Thus we obtain

0 Vbu!/ \O Vb,
Vb, O Wb, O

.. U .. z=0
0 vb,, 0 v,
or Ux=o*
Vb, 0 1 0
where z= " . 2, o¥=|Vby " .1 e and u,=1. Putting r=
0 Vb, 0 Vb

min (n, vV'n M) we have Rr=c where R=r"'Uc =r"'9*. R is positive
definite and its maximum eigenvalue is less than 1.
When we put S=I—R, we obtain the desired result.

3. Process of operation

According to the preceding lemma we shall in the following concern
ourselves with the case where the maximum eigenvalue of |S|=(|s,|) is
less than 1. In this section we want to obtain an estimate of (I—S)-!
=(B;;). For that purpose we take

~k><k—
1
P, Q lf
o Ik
i

as our transient probability matrix where
Py =(pyy) p¢j=ﬁl; o=2 for M>1
ag

o=1 for M<1

k
Q=(6§,;QJ) ;=1 “Z_‘alpfx .

Now, consider a particle with weight 1 at ¢ and take a random
number to decide whether the particle should go to some j(=1, 2, ---, k)
with probability p,, or should be trapped at ¢ with probability ¢;. When
the particle is transmitted to j from ¢ we split it into ¢ new independent
particles multiplied by the weighting factor sgns;;. We thus accumulate
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the total weight of particles trapped at j from a particle which started
from 4, and represent it as X(ij). We then take b¢,=X—(ij)— as an esti-
q;s

mate of f,;.

4. Properties of by,

We shall represent the total weight of particles which have been
trapped at j from a particle which have started from ¢ up to the n-th

generation by X,(ij), and %@ by b%. As will be shown in section
J

6, the mean number of random digits required for obtaining X(7) is
finite, so it can be seen that X,(ij) and b} tend in probability to X(ij)
and b, respectively. Thus we have :
LEMMA.

X..(35) — X(i)

b — by

ip. (n—>+ x)

We then have the following theorems about the mean and variance of
X(ij) and b;.
THEOREM 1.

(Eb)=(I—8)". (EX@#)=I-95)"Q.

PROOF. We can easily get the following recurrence relation.
k
E(X,.+1(%))=6:a; +‘¥1pul (sgn Sul)aE(X,,(’ij))
1

=04+ ;‘_:,lsulE(X,.(q:j))
B =0uts- ~
Thus we have
(BX(i)=T+S+---+8")Q
and
(Eb2)=(I + S+« -+ +8"7).

By making n infinitely large, we get the wanted results.
THEOREM 2.

(D*X(1))=( — S~ (Q+(a|S| - IXE™))
where (E*)=(E*X(i)).
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Proor. It holds that
X (i) =005+ 50 XG50 @0) + -+ + X (i) )
=0+ S o EXi(i) + puolo—DE X, (i)
=00+ Sou | EXi(6) + (1= 1) 5o | EX, i)

Thus we get
(EXZn(@)=I+|S[+--- +|S[)Q
+(e—1)[S|((ER) + |ISIEL-)+ - - - +|S|"(EY)) .

When 7 tends to infinity, we have

(EX*(i))=T—1S)7'Q+ (o —1)I—|S])ISI(E?)
=(=[8)"U(Q+ (s —1)ISI(E) .

Remark: Proofs of the above two theorems show that as ¢ we can
take any integral value for which M/s<1 holds. But the above proof
shows that the smaller the o the smaller the D>X(ij). This is the
reason why we take o as defined before. But our method is not
necessarily an effective one. For example, we have an effective one
when we apply our splitting technique only for transmission from ¢ to j
corresponding to large |s;;| instead of using one and the same factor o
for all [s;,;]. We take the above procedure only for its simplicity of
operation.

5. Effectiveness of splitting technique

When we adopt the ordinary weighting process described in the
paper of Forsythe and Leibler using our P, we have only to multiply
the particle by the weighting factor osgns,; in case it goes from 7 to
j. In this case

(EX:(i))=Q+ ol S(EX:)) ,

and we can not have finite (D*X(4j)) so long as the maximum eigen-
value of |S] is not less than 1/0. Actually we have an example of S
with maximum eigenvalue less than 1, M >1 and with maximum eigen-
value of |S| lying between 0.5 and 1.
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6. Mean and variance of the number of random digits required for one
particle history '

By W,(i) we shall represent the total number of random digits re-
quired or obtaining the n-th generation of a particle starting from s.
Then we have the following :
THEOREM 3.

(EW,.1(2))=ISHEW,(?))+e
(EW(i))=e
(D*W,.1(2))=|S|(D* Wy(3)) + o |S|(E* W(0))
+2|SI(E W.(3)) +e—(E*Wa(i))
(D*W(3))=0
where e=(1, 1, --- 1)) 0=(0, 0, --- 0).
PROOF. As in the proofs of the former theorems, we have

EW,()=1+ SpuoEW,0) =1+ Sso| EW,()
EW;a(@)=E1+ Wali)@i)+ -+ + Wa(i) o))

L3 'S
=14+ ZE,IpIJGE W.()+(o— 1).12_;1)UUE2 W.(9)
k
+ jE_:,lpUO'E W?.U) .
The above proof shows that

(EW,a(@)=I+18|+ - - - +1S|")e<(I—-|S])"e .

It can be seen by this inequality that the probability that a particle
eventually dies is equal to unity. This facts assures us the validity
of our lemma in section 4. We have the following :
THEOREM 4. When we represent the total number of random digits
required for obtaining a whole history of a particle which started form
i by W(), we have '

(EW(2))=(I—|S])"e

(D*W(E)=I—|S)-2ISIEW(i))+ e+ (alS| —INE*W(3))) .

7. Computing procedure for splitting technique

Consider now a computing layout :
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0. We start a particle

gg,?;?:{wf ! 0 * ' ! 2 1 ’ [ ) from 4. We write [¢] in the
+ @ x| | \ + row of the 0-th generation
- | } ; ‘ column. Take a random digit
+ [4] * \ \ | and transmit the particle ac-
- ! @) | x [ [ cording to P.
+ | ‘ ’ (i) ‘ < ’ . 1. If %t is trapped 'at 1,
_ ' (0] l : } ‘ write x right .to the [¢] and
N | } Gl | ' stop the op.erz.mon. .
~ ‘ | { | 2. If it is transmitted to

| | |

(=1, 2, --- k), write ¢, on
the 1st generation column in the same row of [i] in case sgns,,=1 and
in the opposite row in case sgns, = —1.

3. Take the next random digit.

4. If a particle is trapped at ¢, write x right to the 4, in the
2nd generation column. When 0=2, then parenthesize the 4, and start
another new particle from [%,].

5. If particle is transmitted to i,, write 4, in the 2nd generation
column on the same row of i, in case sgn 8,4,=1 and on the opposite
. row in case sgns;,, =—1.

6. Continue the process until there is no 4, left without ( ).
7. Repeat the same process for N new particles.
8. Count the js just left to the x with their signs suggested by

N
their position on the row, and get 3 X(ij)(wy).
y=1

8. Concluding remarks

Process adopted in this paper is one of the simplest type of branch-
ing or multiplicative process and every results are also directly obtain-
able from the general theory [5] [6]. We are preparing to put these
process on the FACOM-118 automatic relay computer. Experimental
results will be presented in some future occasion.
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