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1. Summary and introduction. Among the various criteria that
have been advanced for testing the homogeneity of a set of variance
estimates, M. S. Bartlett’s test [1] is generally considered to be the best
one available of omnibus variety. However, as C. Eisenhart and H.
Solomon [2] have pointed out, ‘Bartlett’s test, though applicable, is
somewhat inappropriate when the alternative to homogeneity that is
most likely to represent the true situation, or that is of special impor-
tance when it does obtain, is that the expected value of some one of
the variance estimates substantially exceeds the expected values of the
others, which may be homogeneous or not.’

W. G. Cochran [3] has developed a test for such a situation, that
is, a test for the statistical significance of the largest of a set of vari-
ance estimates, and if S;?, S,%, ...., S are k variance estimates distributed
independently as y*s*/n with n degrees of freedom, the proposed statistic
for testing the significance is

largest S*
1 Gk, 1)= :
(1) (k. 1) Si*+ 82+ +85

In practice, however, we are also often confronted with the follow-
ing situations as regards discordant variance estimates:

(a) The reverse situation to ‘the Cochran’s, that is, the situation
that the smallest of a set of variance estimates may have the appear-
ance of being discordant.

(b) The situation that the two largest variance estimates may ap-
pear to be different from the remaining estimates.

(c) The situation, which is reverse to (b), that the two smallest
estimates may appear to be discordant.

Here, we are interested in determining whether these variance esti-
mates having the appearance as mentioned above should be truly regarded
as being inconsistent with the remaining variance estimates, in other
words, we want to test the hypothesis that all variance estimates,
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S:2, 8,2,-+ -+, S are estimates of the same population variance, +*, against
the alternative hypothesis that the largest (or smallest) or the two
largest (or two smallest) variance estimates are estimates of the popu-
lation variances different from o*, whereas the remaining variance
estimates have the common variance o*> as the expected value.

For testing the significance of the smallest of k variance estimates,
S:?, S,%,----, S, we propose the statistic

Sk, 1)= smallest S*

(k, 1) S+ S22+ -+ S}

and for testing whether the two largest variance estimates are too high,
the statistic

(3) ( ) Slz+Szz+--..+Sg

(2)

can be used on the intuitive ground. Similarly we can use the statistic

4 S(k, 2)— > two smallest S’s
( ) (‘. ) S12+S22+""+S%

for the situation (c). In general, we can consider the analogous statis-
tics for testing the significance of the three, four, etc. discordant vari-
ance estimates.

In this paper we shall obtain the sampling distribution functions of
the statistics G(k, v) and S(k,») in the null case when all k£ variance
estimates are homogeneous and we shall also give the favourable ex-
panded forms of the distribution functions to obtain the approximate
59 and 19 points of G(k, v) and S(k, v). Although we have not in-
vestigated the power of the tests in this paper, it is believed that our
test procedure possesses considerable intuitive appeal for the practical
situations considered in (a), (b) and (c).

In Section 2, we shall discuss the relations between our proposed
statistics and the optimum slippage test for variance estimates [4].

2. The relation with the optimum slippage test. Let S:*, S)%,----,
S: be k variance estimates on the basis of samples of the same size
drawn from % normal populations my, m,----, m, respectively and let
o¥(4=1,2,+---, k) be the variance of the 7th population z,. If o’=0,"=
ceri=gl =gl =+++-=0: and oj=4~%* with 1>1, it will be called that
7, has been slipped to the right. Similarly we have the population slip-




THE SIGNIFICANCE OF THE DISCORDANT VARIANCE ESTIMATES 41

ped to the left when osj=p?s,* with 0<p<1.

Let D, be the decision that all & variances are equal and D,(i=1, 2
«+«+, k) the decision that D, is false and =z, has been slipped to the
right. D. R. Truax [4] has shown that the optimum statistical procedure,
i.e. the procedure for selecting one of the (k+41) decisions D,, D;,----,
D, which, under some restrictions, maximizes the probability of making
the correct decision when one of the population has been slipped to
the right is the following:

if S%/>% ,Si>L,, select Dx and
if S%/>F..Si=L,, select D,,

where M denotes the population yielding the largest variance estimate
and L, is the 100« percentage point of the statistic S%/>._,S;. This
statistic is the one suggested by Cochran, i.e. G(k, 1). Similarly it is
easily seen that the optimum procedure for selecting one of the (£+1)
decisions D,, D/,----, D,/ in the case when one of the populations has
been slipped to the left is as follows:

if Sy/>k..Si=1,, select D, and

if Sy/>k..83<l,, select D'y,
where D, is the decision that o,>=---- =05} ,=0},1="++++=0i(=0") and o}
=p’s* (0<p¢<1) and N denotes the population yielding the smallest vari-
ance estimate and [, is the 100a percentage point of S(k, 1)=S%/>%_,S?.

In the case when two or more populations have been slipped to the
right or to the left, it is, in general, difficult to obtain the optimum
statistical procedure such as the one discussed above. But in the special
case where the variances of the slipped populations have the high values
or have the low values of the same magnitude, we can show that, un-
der the analogous restrictions of Truax’s, the statistical procedure based
on our statistics G(k, v) or S(k, v) is optimum.

Let Dy, be the decision that all ¥ variances are equal and D,; the
decision that oi=-:c+e=0} =0d},,=++++=0} =0}, =++-=0}(=0") and
oi=ao5=10", (1<j, i=1, 2,++++,k—1), where 2>>1. Then we have D=
Dy;, and the number of the distinct decisions is k(_kz— b +1. We shall

consider the optimum procedure of selecting one of the Alg_z—_l[ +1

decisions, Do, Dys,++-+, D;_; , under the following restrictions:
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(i) D, should be selected with probability 1—«, where « is a small
positive number, when all the variances are equal.

(ii) When two populations 7, and 7=, have been slipped to the right
in the same magnitude, the probability of selecting D,; should be the
same for all possible pairs of ¢ and j and

(iii) The procedure should be invariant if all the observations are
multiplied by the same positive constant and if some constant b, is added
to all observations in the ¢ th population.

Because of the restriction (iii), any allowable procedure depends
only on (k—1) statistics, S?/S%,----, Sz_,/S:. Let u,=S2/S: and v,=d’/o}
for =1, 2,-+-+-, k—1. Moreover, we set

Dy: the decision that v,=v,=+-+-=v,_,=1

E, : the decision that vj=--cc=v,_ =0 ="r =0, =V =2+
=v1=1 and vi=vi=2, (i<, i=1,---, k—2, j=<k)

D, : the decision that o,—=-+++=v,_,=v,,;=++--=v,.,=1/2* and

vi=1, (i=1, 2,----, k—1)

Then any allowable procedure for selecting one of the set (Dyy, Dy, -+,
D;_,x) can be transformed into a procedure for selecting one of the set
(Dooy Disy++++, Di_y ).

According to the Truax’s methods [4], it is necessary for obtaining
the optimum solution to calculate the region consisting of all points,
for which ﬁ,ﬁ is selected, in the wu,, u,,++--- , Ue-1 Space where p,p0.p
=max (PooFoo, P12y ****5 Di-1 Ju-1.) Where g,q is the joint probability den-
sity function of ., %, -+ -, u;_; when D, is true and p,s denotes the a priori
probability that D,, is true. As we consider, under the restriction (i), the
situation that there is no basis, prior to the analysis of data, for de-
termining which populations have been slipped to the right, we may put

pouE{l _*]E(sz—*l)* p{’ y Pe=Pp="*"*** =Dp_1x==D.
Then we can easily obtain the following results: the region for select-
ing D,(j==k) consists of all points in the wu,, %,,-+--, u,_, space which
satisfy the relations :
u;, u;>1,

Uy uj>max (ul- sy Upyy Uggryt ooty Us_gy Ugsqyeece, uk—l)v
(us+us) { Xkziua+1} >L,
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where L=;fli2‘i[1—{/ - ’E(k {3)* - 77;}2/13(1&—1)] ,

- _ i — 1y 2)(n-1)

(1= P p))
and the region for selecting Dy (i=1, 2,----, k—1) is
1>u, (a=1,----,1—1, t+1,---+, k—1),
ui>max (s s sy U1y Ugsrs =200, uk-l)r
A +u)/{ X5 ua+1} >L,

and finally the region for selecting D,, is the remainder in the u;,
Uyy+ -+, Uy, Space. If we return to the initial notations by substituting
u,=S%/S; and by making 5“ correspond to D,;,, we can obtain the opti-

K(k—1)
2

mum statistical procedure for selecting one of the +1 decisions,

Dy, Dysy++ -+, Dy_yiy when two populations have been slipped to the right,
that is :

if (Sy+8%)/>%.S:>L, seleet Dy, and

if (Sy+8%)/Sr.Si<L, select Dy,
where M, M’ denote the populations yielding the two largest variance
estimates. Here, because of the condition (i) we may replace L by L,
where L, is the 100a percentage point of (Si+Sk.)/>.i-.S7.

In case when the two populations have been slipped to the left,

similar discussion can be made.

3. The distribution of G(k, »). In this section, we shall derive
the sampling distribution function of G(k, ») .in the null case, i.e. in
the case when the variances of populations are all equal. As S(k, v)=
1—G(k, k-v), the distribution of S(k, ») can be obtained from the distri-
bution of G(k, ») for 1<, v<k—1.

Let #,<a,<-:--<a, be the ordered set of k¥ random variables which
are distributed independently as y2o*/n with n degrees of freedom each,
where o is the common variance in the null case. Then, the statistic
G(k, v) is written as

5 G, )= Tt oo+ T
(%) (k. ») L+ Tyt oo+ Ty

The simultaneous density function of @, .,+-+-, &, is given by
kn
! 5 n_
(6) f@namnm)= P (L) @meem)t
g

(ool
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X exp {-—— 2”» (x1+xz+---+:ck)}, (2, <@, <<e o+ - <)
52

By making the transformation
(7) Y= @1+ Ty 2o +2),  (1=1, 2,-+++, k—1)
Y =1+ Lo+ 2+,
and integrating y, over 0<y,< oo, we obtain the joint density function
of Y1, Yoy ++, Yx-1 with the form,
kn)
I &2
(%

(8) L@ ooy o) =kl — > 20 (e ey )
{r(e))

2

X(A=y,—yo—---- —yk-l)’_-l s
where y, are restricted by the relations
(9) 0<y1§y2§'"'éyx—lél—?h—yz—'"'—?/k—l-
Since G(k, v)=1—y,—y,— -+ - —¥,-,, we make the following transformation
Y1=A—GC)A—up ) A —tpoy-r) s+ = - (1 —us)(1— ),
Yr=1—G)1 =y )A—Upoyr)e s+ (1 —us)us,
y.3=(1 —G@)(1=up )X —=poyq) e+ + - (1 —u)tls,

y.k-v-l——_(l—G)(l—uk—v)uk—v—-h

(10) Y- =1—G)u; s,
Yi-v+1=GV; _ys1,
g/.k—v+2=G(1 —Vk-y+1)Vi=ys2
Yi2=G(1 = Ve oys1)(1 =V oyar) s = - (L =0 )04 sy
Yr-1=G(1 =V ys )1 = Vgyi2)* o o (L =0, 3) (L — 04 5)

where G= G(k, v). Then, since the Jacobian of this transformation is

(11) G A—GF T (- T (1—vg)-i-p
a=3 B=k-v+1
and 1—_’@/1—‘?/2— cecc —ylc—1=G(1—vk—wl)(l""vk—vn)' .. '(1—Uk_1), we can

write the joint density function of G, us,++-«, Uy y, Viysr,orre, v,y in
the following way: »

(12) f(G’u‘b'"’v Uk—ys Vgeyirs®®**, vk,-1)

=kt /(G BN % (s T )
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b

xeeeex At o ("*”2‘,1)’9.).@( .on (efél)ﬁ)
x ﬂ(vk_m; ’22 , ,,(f:ﬁ)ﬁ)....ﬂ(vk_l; o 33)

where A(z; p, q)—%%(")fxp“(l x)~'. Hence, in order to obtain the

density function of G(k, »), we need to integrate out u,,-«--, u,_,, Ve_yer,
eseo, v,y from (12). The domain of integration is easily obtained from
(9) and (10) as follows :

(13) M <1, (i=k—1, k—2,----, 3)

and for 2<v<k-—1,

S o (i=Fk=1,ee, k—y+2
lvil<<k——+1 (@ ’ v+2)
IZ;G uk—v <ulc—v+1<"y"‘ ’

(14) _Wimt U, <hAG), (G=k—v, k—v—1,+-+, 3)
1+u;_,

5 < <hAG),

Y «G<1,

7 < <

where %2,G) is a function of G and j such that it takes the value 1 for

1>G>v/(k—j+1) and equals to G/[v—(k—7)G] for v/k<<G<v/(k—j+1).
If we define the function W, (x) such that

15) Wia)=1, W.x)= ('r+1)j”l (t n %”)W, ,( 1‘_ )dt.
we can write the simultaneous density function of G, u,,----, u,_, after
integrating out v,_, Vx_s,***+, Vy_y, in the form

(16) f(G Uyt uk—v)

T CE N
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X oeennx p(uw; Lz‘ ,(’E,—,”,z—,l)%)wy_l(l:éguk_y),

4. Special cases (I). In this section, we shall discuss special cases
of the sampling distribution functions when v=1 and v=k—1. First
we shall consider the case where y=1, i.e. Cochran’s case. In this
case, in order to obtain the distribution function of G(k, 1), we must
change the order of the integration in the inverse way.

e o Jael s i

T+uy

' . no (k—2)n S‘ .o (B=1m\ye
Xglﬂci ﬂ(uk—lr 9 : 2 v)duk-l ey ﬁ(G, P 9 )dG 1
FUge~n T+ug. 1

7

Changing the order of the integration, for k=3,

AN CE T ey

Hence, we have

(18) P(G>g)=31,_g(n, - )

for 1>g_2_,%- and

P(G>g)=31,-,(n, ’;)
(19)

_3.255512}8(& ", n)ﬂ(uz; ’2‘ , —Z-)dusz

for __Zg_>_.—; , where I(p, q) is the K. Pearson’s incomplete beta

function ratio. When k=4.

R R W .
L A N

3 3
. n  3n .on . noon
Xﬁ(G, 71 *2)@(“3: 9’ n)ﬁ(uzy ’2 ' g )duzduadc-
Then, noticing the relation (*), we obtain
_ 3n =
(20) PG>o)=4L( 5 7))




THE SIGNIFICANCE OF THE DISCORDANT VARIANCE ESTIMATES 47

for 1>¢> % and

ros-a {3 1)

@1

—4-3fsli ,@(G; 2 ,3;)/9(%; 2. n)duadG,

1-&

for % =>9=> and

1,
=3

PG>g)=4L,( ), )

e sl [, (0 5 (e mpdc

2

4.3 %Si L A % 3 oo 2, Yo 2, 2 NG

-

-G 1-

In the analogous way, we can generally write the distribution
function of G(k, 1) for k in the following form:

@3)  P(G>g)=kPy(g), for 1>gg—217,

24)  P(G>g)=kP(9)—k(k—1)P(g),  for -f;—gg;%,
@5)  P(G>g)=kPy(g)—k(k—1)Pyg)+ -~ - +(—1)* Il —1)- - - -
o+ (k—j +1)PAg)
for 1/j=¢=>1/(+1), and
(26)  P(G>g)=kP\(g)—Mk—1)P,(g)+ - - - +(— 1)}kl —1)- - - -3-2P, _(g),

for 1/(15—1)292110, where

en  p@={ 86 %, E 0 ac-r, (E D n),
and
SRS PRE W CE TR
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xﬂ(uk_l; _%., (k:—2_2_)_”;) ceee ﬂ(uk—1+‘z; ,,g'_' _(k:Jé‘J'l)"f)

FICE R L R o

where we put [l,=u,/(1-u,).

Next we shall consider the case when yv=k—1. The sampling dis-
tribution funetion of G(k, k—1)=1—S(k, 1) can be obtained from (16) in
the following simple form:

P(G>g)=P(S<1—y)

29) =k§;ﬂ(G; (""2})” L 126)ac

=1-W,_.(1—g)
By subdividing the integration, we can write the distribution fune-
tion of G(k, k—1) in the following expanded form, i.e.

(30) P(G>g)=kP*(9)—Kk—1)P,*(g)+ - - -
+(—=1)*k(k—1)----3-2P,_,*(9),
where
PN il .on (k—1)mn . n (k—1)n
6y pro=|"a(s 2, E D Vas—1 (3, B0,

pra=] [T e [ (s e, ()

0 0 2
xﬂ(vz; %, .(k,,—,zz,)," ) cees ﬂ(vj; 72l, ("?,,_29)” )dvj- .o odv,dS
for j=2,8,----,k—1, where [,=v,/(1—v,).

It should be noticed that the expanded forms (25) and (82) have
been made in such a way that the true value of P(G>>g) exists between
the values obtained from the first m terms and m+1 terms, where
1<m<k-—1, and as will be seen in Section 6, we shall make use of this
fact in order to obtain the approximate 5% and 19 points of G(%, 1) and
S(k, 1) for each & and n.

(32)

5. Special cases (II). As in the preceding section, we shall consider
the expanded forms of the distribution functions of G(k, 2) and G(k,
k—2) or S(k, 2) to evaluate the 5% and 1% points. We can easily
write the distribution function of G(k, k—2)=1—S(k, 2) from (16) as
follows :
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e IR W R MG
(33) =0t A |

x ﬁ(uz; > %) WH( %Quz) . dudG

where G=G(k, k—2), Hence we obtain

pG>o=kk-1 | o(6; F  w)a(us 2 %)
(34) }

X Wk_a(lég uz) du,dG

for 1>g>(k—2)/(k—1), and

PG>o=kk-1[ | | - SS# (s #m )
35 T *k=-2)1-6)
. x f(us; o —;‘) W IEG w,) - du,dG

for (k—2)/(k—1)>g=>(k—2)/k. If we write the expanded form of W;_,

(1; G u,) in the analogous way as (30), we have

WH( 1,'G1G,u2)=1—(k—2)1>;(a, )+ (ke —2Wk—3)PYG, ) — -+ -+

+(=1pYk—2Xk—38)- -+ -3-2P;_{G, u,)
where

1-6,,

P;(G, u2)=goG 5(1)3; ;" , _(k___23)'n )d'l);g ,

and

PG, u))— ST% S S’* Sf Bl 2, U

0

xﬂ(m; ’22 , (k—24),">....lg(1,1; %,' (k;j)n)

X ‘B(vj+1; 7]23_,. , .(lc:_;_]:)ﬁ )dvj+1. .o .dq)4dv3 ,

for j=2, 8,-+.-, k—2, where l,/=v,/(1--v,). Substituting this expanded
form into (34) and (35), we have

P(G>g)=h(k—1[Q(g) — Q(g)] — bk — 1Xk—2)[Q5(g) — QP(g)] + - - -
(36) + (=1 —1) - « - - 8- 2[@4(g)— Q2u(g)] 5
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where
vp— | ' . (k=2)n ..o n
@o-|, S%_ﬂ(G, 2 w)a(us 2, ) dude
-1 (k—2)n
(37) 5 Lo . ),
k-2
o= . (k=2 non
Ql (g) Sﬂ _(__GAﬁ(G’ 2 y n)ﬂ(uz, 2 ) 2 )dugdG
¥—2)(1-6&)
and
o= [ a(e: 2 w)p(us 7, T) PG, wdudG,
gJ1 2 2 2
(38) 2 _
k-1t k—2)n n n
Q§”’(g)=§ S B\ G; (,n Bluy, —, ) PAG, u,)du.dG
9 ng;(m ( 2 ) ( 2 2)
for j=2, 8,----, k—2 and we put Q(9)=0 (=1, 2,:---, k—2) whenever
k-2
> r=2
R

When v=2, the distribution functions of G(k, 2) are given, from
(12) and (14) as follows:
(39) P(G>9)=R\(9), for 1>¢>2/3

(40) PG>)=R( 2 )+Ria),  for 2/3>g=2/4
and generally
—r(2 2. 2
(D PG>O=R( 5 )+ R § )+t B 2 )+ Rrto)
for 2/(j—1)=>¢=>2/j, where j is a positive integer such that £>>;j>>4 and

101 (1 1 1
Rl(g)=k!LS 5 cece S SI-G H(G, Ugys v s Uy, Vo1 )AVs—1 * « -dULAG,
w0, Wy _g " Fuk_y

R (y)—k'S“_Sl Sl S‘ Sa-—gfc Sz_-gs_:i)b
@ - H ceee- o
g w, Wy g W1 Wy

o (%
S Sl—G H(G, uyy» Uy, V1) * QVgye oo +dUdG

YE-3 Y g Uy _y
(a=2r 3!"", k—2)
where we put w,=u%,/(1+u%,) and

H(G, -+ -+, )= (G5 m, —(!?—?sz)ﬂ(uz; 2y
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B I s )

Each R(g), for j=1,2,----, k—2, can be expanded, though cum-
bersome, in the analogous way as the previous cases by dividing the
integration. That is,

(42) Ry(9)=F(k—1)R:\(9)—Fk(k— 1) k—2)R15(g)+ -+ -+
+(—1)"'"k(k—1)----3- 2R1(lc—2)(g)r
where
1 (k—2)n
Rn(g)—TIl—a (_f,éf,,_ ’ 'n) ’
00 (gl (k=2 . n (k=3m
Rao)= [ {706 n C ol 50 5 )
X ﬁ(’vk—l; %; —’g— vk_xduk_sz
and

for a=3,----,k—2, and
(43)  R(9)=k(k—1Xk—2)R.:(9)—k(k— 1)k — 2k —3)R.A9)+ - - - -
+(=1)2k(k—1)-+ -8 - 2R, -2(9),

(6 P Yol 5 )

where

1 1-¢
k-2 G Yg -2

rw-[}[".

x ﬁ(v,ﬂ s g) Ay, dG,

and

rao=(§, 17 o [ G 0 O5)

k—a k-a+1 k-2 “F Uk_s
O I (RER T

x,@(v,m; ’2’ , »Zf)dvk_lduk_z----duk_,,,dG

(a=38,++++, k=2) and so on.




52 M. SIOTANI

Since the exact expressions of the. distribution functions of G(k&, »),
though we can write them for each £ and » as is seen above, are too
cumbersome and too labourious to compute the percentage points of the
significance, we shall study, in the following section, the approximate
evaluation of the numerical distribution functions about the neighbour-
hood of the 59 and 19 points of significance.

6. Approximate evaluation of the percentage points of G(k, 1),
G(k, 2), S(k, 1) and S(k, 2). In order to obtain the upper 59 and 19
points of significance of G(k, 1) and G(k, 2) and the lower 5% and 1%
points of significance of S(%, 1) and S(k, 2), we shall examine numerically
the degrees of approximation of evaluation for 59 points which are
obtained using the first term, first two terms, etec. of the expanded
forms such as in the preceding sections.

First, we shall examine the cases of G(k, 1) and S(k, 1). In these
cases, the first term and the first two terms of the distribution func-

tions are
(44, a) P(G>g)~k[1_,(.(]ff,,2},l’§, , ,;L)
(44, b) P(G>g)~kll_g(~(l“—721m ’2‘ )—k(k—l)P,(g)

for G(k, 1) and

(45, 2) P(S<s)zkls(727’ , (’6:21)72)

(45, b) P(S<S)wkfs(% , -(k,le)g> —k(k—1)P,*(1—s)

for S(k, 1), where (44, a) is exact whenever gg% and (44, b) is exact

whenever g=>1/3.

Tables IA and IB show the uper 59 points of G(k, 1) and the lower
59 points of S(k, 1), i.e. the values g(0.05) such that 0.05=P{G(k, 1)
>0(0.05)} and the values s(0.05) such that 0.05=P{S(k, 1)<(s(0.05)} using
the formulas (44) and (45), respectively.

The values of g(0.05) and s(0.05) in Tables IA and IB were obtained
with the aid of the polynomials in ¢ and s, to which (44) and (45) can
be reduced, and of Tables of Incomplete Beta Function [5], for appro-
priate lower values of n degrees of freedom. For higher values of =,
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Table 1 A. The upper 59 points of G(k, 1)—¢(0.05)— using
(44, a) and (45, b)

e 2 s 10 2 30 50 100
(44,2)  0.76792 0.55980 0.48838 0.41594  0.38416 0.35272  0.34775
(44,b)  * x  x % 048838 0.41504 | 0.38415 0.35271 = 0.34774
S — [p— . - — -
o (@4.,2) | 0.44495 028228 0.23534  0.1910 0.17248 | 0.15460 | 0.13747
| (44,b)  0.44495 | 0.28224 0.23528 | 0.19103 0.17241 | 0.15454‘ 0.13740
o | 44,3 0.27046 ' 0.16023 | 0.13044 | 0.10326 0.09204‘ 0.08141 | 0.07138

(44,b) © 0.27041 0.16017 0.13038 0.10321 . 0.09198 ' 0.08136  0.07133

Table 1 B. The lower 5% points of S(k, 1)—s(0.05)— using
(45, a) and (45, b)

a2 6 10 20 30 | 50 100

| (45,a) | 0.00418 0.04647 0.07685 = 0.11713  0.13800 0.16060  0.18507

4 | i
| (45,b) ' 0.00424 | 0.04656 | 0.07693 0.11720 0.13806 0.16065 0.18512
" ‘ (45,a)  0.00056 | 0.01200 | 0.02261 ' 0.03836 0.04729 = 0.05732  0.06852
(45,b)  0.00059 = 0.01205  0.02267 0.03842 0.04736  0.05738 ' 0.06858
20 © @5,a)  0.00013 0.00453 = 0.00901 0.01699  0.02154 0.02677 | 0.03273

(45,b)  0.00016 | 0.00456 0.00904 0.01703 0.02158 0.02682 | 0.03278

they were evaluated from the values of the F-distribution which were
determined by means of E. Paulson’s procedure [6]. P,(g) and P,*(1—s)
were evaluated by the relations

(46) Pz(g)~zjfﬁ(G; o, eodp )dGS:zgﬁ(u: 2, E=Bm ),

2 2 2
= D)L )
| <Ly(F5 ),
and -
@y pra-omrfi=L(E00 - ra (650, )

where 4 and A* are about 1/2, but are chosen in such a way that the
right-hand sides of (46) and (47) are not smaller than the left-hand sides
with the aid of the exact values obtained from cases of n=1, 2,...., 10.
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Since the exact 5% points, ¢(0.05) and s(0.05), of signficance of
G(k, 1) and S(%, 1) lie, as is noticed in Section 4, between the two values
obtained from two expressions in (44) and (45), respectively, it will be
recognized that the 5% and 19 levels of G(k, 1) and S(k, 1) can be
evaluated to a good approximation using only the first term of the ex-
panded forms of their distribution functions, i.e. (44, a) and (45, a) and
the values thus obtained are accurate up to four decimal places.

Now we shall examine the degree of approximation in the analogous
way, when the 5% points of S(k, 2) are evaluated. The expression to
be examined is

(48)  P(S<8)=kk—-1){Q"(1—8)— Q*(1—8)} —k(k—1)k—2){Q"(1—3)
— Q1 —8)} + Mk — 1Nk — 2k —3){ (1 —8)— Q™(1 —s)}
=(1)-(2)+(3)

where Q{(1—s)=0, (=1, 2, 3) whenever s< 1 Table 2 A shows

k-1
the lower 59 points of S(k, 2) using the formula (48) up to (1), (2), and (3).

Table 2 A. The lower 5% points of S(k, 2)—s(0.05)—using
(52) up to (1), (2) and (3)

Tt 2 6 1 S T R
- @ ©0.02045  0.12668  0.17590  0.21655 | 0.23389
5 (D-@ . 0.03091  0.1285  0.17739  0.21782 . 0.23503
@®-@+@ 0.03093  0.12853  0.17737  0.21780 = 0.23502
@) | 0.00563  0.04186  0.06543  0.08679 | 0.09607
10 . (M-( | 0.00619  0.04341  0.06703  0.08831  0.09754
 M-@+@®@  0.00614  0.04328  0.06690 ' 0.08818 .  0.09742
: o) ©0.00125  0.01504  0.02595  0.03625  0.04126
20 (1)-@  0.0041  0.01581  0.02688 = 0.03739 = 0.04244
1)-@+@ 0.00139 ~ 0.01568 ~ 0.02676  0.03726  0.04230

Here (2) and (3) have been calculated from the polynomials in s to which
they are reduced. From these results, it can be seen that, in order to
obtain the 59 and 1% points of S(k, 2) which are accurate up to four
decimal places, we need to use the first two terms of the expanded
form, i.e. (1)—(2).

When we want to evaluate the 59 and 1% points of G(k, 2), the
labour of calculation is much increased. For example, when k=5 and
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n=10, in order to obtain the 5% point of G(5, 2), we must calculate

Rn( g ) Ru(—%), Rls(—g—) and Ru(g). Thus, if calculation must be

performed by using the expressions (39)~(41), it is very labourious to
obtain the desired percentage points of G(k, 2) for high values of % and
n. The author has not been able to obtain the more appropriate ex-

panded form of the distribution function of G(k, 2) than the expressions
(39)~(41).

Tables of the upper 52 and 19 points, ¢(0.05) and g(0.01), of
G(k, 1) have been given in [2] for several values of k and n.

I shall give the tables of other cases in near future.
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