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1. Introduction

In this paper we want to treat a generalization of the Neyman-
Pearson’s fundamental lemma.

At first we describe the fundamental lemma in a little generalized
form which was obtained by George B. Dantzig and Wald [1].

Let R be a finite dimensional Euclidean space, B be a Borelfield of

subsets of RB. Let fy(@), fi(@), ..., fu(x) be probability density functions
defined over B, that is,

fi@) =0
[f@i=1  G=0,1,2...n)

For a given sequénce {e} ¢=1,2, ...,n) with
0=e¢=1  (=12,...,n)
we denote by & the set of all Borel sets S such that

ff}(a:)dz———c, (¢=1,2,...,n)

and by &° the set of all Borel sets S, such that S, belongs to © and for
any element S of & we have

[@ie= [ fuoyi.

Then we get the following lemma.

LEMMA (G. B. Dantzig and A. Wald) If © is not empty, then &°
is also not empty. It is a necessary and sufficient condition for any
element S of S to be an element of S° that a sequence (k) (i=1,2,
<., M) exists such that

Jl@) =2k fx), of xS

fi@) =Dk fx), if x€S

M Ms



198 YUKIo SUZUKI

except perhaps on a set of measure zoro.

The problem we want to treat in this paper is to generalize the
above lemma for the purpose of treating the same problem in case
the number of probability density functions is countably infinite. But
this problem is rather difficult in some points and we have to set
some restrictions on the powers of tests to prove the necessary
condition.

2. Sufficient condition

Let {fi(®)} (¢=0,1,2, ...) be a sequence of probability density func-
tions which are defined on a finite dimensional Euclidean space R.
For a given sequence {¢;} (:=1,2, ...) such that

2.1 0<e=<1, (i=1,2, ...)
we denote by © the set of all Borel sets S such that

fﬁ(x)dx:ci (i=1,2,...).

and by &° the subset of © such that for any element S, in &, and for
any element S of € the following inequality holds.

[ fiwie= [ fioaz.

LEMMA 1. It is a sufficient condition for any element S, of S to be
an element of ©° that a sequence of real numbers {k} (1=1,2,...)
exists such that ’

Sk f(@)
18 convergent for all xe¢ R except on a set of measure zero and for
ail n ;‘:.‘qu,(x) is dominated by some integrable function G(x), that is,
i=1

Z"l}k.f,(x) < G(x) for all = except perhaps on a set of measure zero, and

f G(x)dz < o, and furthermore
R

F@=hfla) if wes,
(2.2) -
So(@) = gsz (@)  if v€S,, except perhaps on a set of

measure zero.
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Proof. Suppose that the conditions are satisfied, then for any Se¢ &
f fiayia— [ fayin= f fiaa— [ Flea = [ Skf@is

-/ 2 kS @ Sk f P Sk f@is
=3k( [ f@ds— [ fi@)o)

So-5 -5,

From the assumption that S and S, both belong to S
f fi@)dz= f fi@)de (i=1,2,...)
So s

and so

f fu@)dz= f filmde  (i=1,2,...).

SO—S S—So
Therefore we get the lemma.

8. Some concepts and lemma
Let I® consist of all sequences of real numbers {&} (¢:=0,1,2,...)
such that )& <o, that is, [® is a Hilbert space. As usual, for

=0
{&) el®, we denote {§} and ii}‘&-'l, by & and || &|® respectively.
Further, for given two elements ¢ -and n of I®, we denote their inner
product by (&, 5), that is,

& 9= g},&m, where 5= {3} (¢=0,1,2, ...).

Let
3.1) e={a;} (¢=1,2,...)
be a fixed element of I such that a,=1 and ¢,>0 (¢:=1,2,...)

Now, let us consider the sequence {a, f f,(x)dx} (#=0,1,2,...) for any

Borel set S and denote it by V(S). Then for any Se B, V(S) belongs
to [®, because we get

(3.2) V@)1= (s flayiz) < Sai<e.

If S ranges over all measurable sets, we obtain a subset % of {®,
that is, R={V(S):Se B}
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Let us denote the (i)-th term of V(S) by V,_,(S) and the first term of
V(S) by Vy(S). Consider the sequence {0, Vi(S), Vi(S), ...} for any
measurable set S and denote it by V%S). Letting S range over all
measurable sets, we obtain a subset ®° of [, that is, R°={V*(S); S¢ B}.
For any n, consider {Vy(S), Vi(S), ..., Vi(S), 0,0, ...} and denote it by
V@(8). Let R™ be the subset of ® consisting of all such V™(S) cor-
responding to all Borel sets S. Then by‘the Lyapounof’s theorem %™
is closed, bounded and convex. From these facts we get the following
lemma.

LEMMA 2. Let ® and ®° be closures of ® and R°, respectively,
then B and R° are bounded and convez.

Proof: It is sufficient to prove the lemma in %. Let & and n be any
two elements of %, and let a be any positive real number such that
0<aexl.

To prove the convexity of &%, it is sufficient to prove
af+(l—ayeR. '
Since % > §, n, there exist two sequences
{(V(Si)} (=1,2,...) and {V(S,)} (¢1=1,2,...)
such that
(3-3) V(Su) -> E ’ V(S2i) —>7 (1: g oo)
By Lyapounoff’s lemma mentioned above, there exists

,, n=1,2,...
15, (i:l,z, )
such that
RGN+ A=Y=V o). (1D

3 y s e

N

and hence by (8.2) and (8.8)
lim V(S ™)=lim V™(S,™)

=1lim {aV™(S,,) + (1 — @) V™(S;,)}
=aV(S,)+(1—a)V(Sy) .

Therefore we obtain,
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lim (lim V(S®))=1im {aV(S,) + A~ ) V(S,)}

=af+(1—a)y.
and so we get
| lim V(S;*)=aé+(1—a)y

This means that :
a+(1—a)yyeR.
Thus, the convexity of 3 has been proved. The boundedness of & is
the immediate result of (38.2).

From this lemma we can say % is dense in the closed convex set %.

In the same way, we can verify that R° is dense in the closed set R°.

4. Convex set

In this section we want to prove a lemma concerning convex sets,
in a rather general form.
_ Let L be a real normed space, that is, L is a vector space, and for
any point ¢ of L a real number ||z]] is defined in such way that the
following three conditions are satisfied,

(a) lz]l=0 and |lz|]|=0%5x=0.

(b) Hetyll=lNzll+yll

(e) lexll < |al-llz]l where a is an arbitrary real number
and y e L.

If L is a normed space, we can define metric between arbitary two
points z,y by [lz—y]||. If K is a subset of L and the following condi-
tion is satisfied: for any real number a such that 0 <« =<1, and for
arbitrary two points z and y of K, ax+(1—a)y belongs to K, then K
is called a convex set in L. Now, let K be convex and closed and
consider the smallest of all subspaces of L containing K, say, Lrx. Then
we obtain the following lemma.

LEMMA 3. If z is a boundary point of K when we regard L, vs
the whole space, then there exists a linear functional f, such that

(4.1 Sup £/@) = f(2)
that is, K lies in the one handside of the hyperplane: fy(x)—f,(z)=0

Proof. Since we can translate K without loss of generality and K
is closed, we may assume that '
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Inf |lzll=a>0

ze(Lg—-K)
Now choose o' such that 0<a'<a and let K’ be K~ {z:||z—zc|l =4,
for every boundary point ., of X}. Then K’ is also a convex set. Let
K" be {z;||lx—2']] <« for some point 2’ € K’'}. Obviously K” is also
a convex set. Furthermore, it is clear that
K”AL}g':K .

Obviously z is also a boundary point of K” when we regard L as the
whole space. Now, we define a function p(z) on L as follows:

(4.2) p@z) = inf p
p>0,~P-EK”
Then, p(x) is a sub-additive fuction, that is, for any two points « and y
in L, and for any non-negative real number «
(4.3) @)+ () = p(z+Y)
(4.4) p(az)=ap(z)
(4.4) is obvious. (4.8) is proved as follows. For an arbitrary positive
number ¢, and two arbitrary elements of L, say z and y,

d e K" an Y k7

p@)+e p)+e
consist by virtue of the definition of p(x). Since K’ is convex,

pE)+e Lz p(Yy)+e .Y K"
p@)+pY)+2 p@)+e p@)+py)+2e py)+e

b

and so

. TFY  gr.

p(x)+ DY) +2
This means from the definition of p(z+y),

p(@)+p(y)+2¢ = p(x+y)
Since ¢ may be arbitrarily small, this proves the relation (4.8).

Now, let L, be a subspace of L such that L, = {r:2=92, — 0 <y< }.

We define a function f(x) on L, such that for z=vz we have f(x)=v.
Then f(x) is a linear functional on L, and furthermore it is easy to
verify

fi@)=p@®) on L,
Then by virtue of Hahn-Banach’s extension theorem, we get a linear
functional f on L such that
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(4.5) f@=<px) onL and f(@)=fi(x) onlL,
Therefore
Sup f(x) < Sup p(@)=1=1)=f(2).
z€K” TeK’’
Since KT K" we obtain
Sup f(z) = f(2) .
zeK
Thus the lemma was proved.
In the special case such that L is a Hilbert space [*®, linear func-

tional f(z) is expressed by Rietz’ Theorem in the form of inner product,
that is, f(x)=(z, k), where k¢ !®, and so

f@)—f@=@—2k).

In the last section we proved that % or ®° is a closed and convex set
and so by above lemma there exists a linear functional f(x) such that

Sup (f(x)—f()) =0, where z is a boundary point of R

ZER —_
regarding as the whole space the smallest subspace which contains R.

8§ 5. Necessary condition

In this section we want to prove the necessity of the condition (2.2)
under some assumptions which would be rather weak.

Here, we use the same notations as used in previous sections
without further explanations.

Assumption (I)

There exist an integrable function G(r) on R and an element
{a}(t=0, 1, 2, ...) of [*® such that a,=1, a;, >0 (¢=1, 2,...) and for

which i}la,f.(x) < o and Si,‘aj,(a:) < G(z) for all n. For any A such that
- i=1

heR, we denote {S: V°S)=h, where S is a measurable set} by S,.
Clearly, {a.c}(i=0, 1, 2,...) is an element of {® and we denote it by c.
Let & be the set of all measurable sets S, such that

S, e &S,
and

f fi@)de = f fz)ds for any Se &,
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Assumption (IT)
&, is not empty.

We denote §u@p f fol@)dx by a*(S,). Then we can state the third as-
Sen ;

sumption as follows.

Assumption (III)

For an arbitrary positive number ¢, there exists a positive number
7 such that

a*©)— [ fimpr <o

Sy

for any A e R° such that ||A—c]|] < 5.

We can easily see that, if the conditions in Assumption (II) and
(III) are statisfied, V(S,) is a boundary point of ®. Then we can obtain
the following lemma.

LEMMA 4. Let ¢ be an inner point of R°, and S, be a measurable
set which satisfies Assumptions (I), (II) and (III). Then there exrists a

sequence (k}(t=1, 2,...) of real numbers such that i‘,kl < »,

i=1

and Fi@) 2 3 haf (@) if 58,
So(@) = 0_.2 ka.f(x)  other wise

except perhaps on a set of measure zero.
Proof. First consider the special case, where
Sup V,(S)=Inf V,(S)
SESe Se&8c
In this case, if there exists another inner point ¢’ of ®° such that
Sup V,(S) > Inf V,(S),
Sege’ Sege
We can find the third inner point ¢* such that

c=ac*+pBc, where a,8=0 and a+8=1,
and G 30

Further there exist S’ and S” which belong to S, and
V(S > V,(S").
For any SeG,x, aV(S)+B8V(S) e
aV(S)+BV(S") e R
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from the convexity of %
clearly aV (S)+BV (S)FaV (S)+8V (S”)
and aV(8)+BV(S)=aV(S)+BV(S")=c,, (=1, 2, ...)
This contradicts with the assumption: §é161: V(S = EIelchO(S), and so we
get SS%IZ Vo(S) :SIE%E,VO(S) . From this and the fact that R° lies densely
in M, there exists only one point in R corresponding to an arbitrary
point ¢ in R°, that is, there exists a function defined on R°
f(@)=h, for any ge RO
such that (hos G1y 9oy ... ) ER.
and for any a, 8=0:a+8=1
flag'+ 89" =af(¢)+B8f(g") for any ¢, ¢ ¢ R

However, we can easily extend f(x) defined on R° to a linear functional
on the subspace [¥ which we get by replacing the first elements of all
elements of /* by zero. Now, let the extended linear functional be F(x).

Then by the remark in §4, there exists a point % of I such that

F@)=(k, z)= ;’_3; k.

Therefore, Vi(S)=F(V(S) =3k Vi(S)
where VUS)=1{0, Vi(S), VS), ...},
that is,

[fi@dz= 33k [ af i@z
Then by Assumption (I)swe have )
f So@)dx= f 2; ka.fi(x)dx for every Borel set S.
Therefore swe get S
Fo@)= 3k fi(a)

except on a set of measure zero. Thus, the proof has been carried out
in the special case where Sup V,(S)=Inf V(S).
. Sege SeBe
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Secondly, we treat the case where sSup Vo(S") > Inf V(S).
€6c SEGSe

Because ¢ is an inner point of R°, we can fiind @, such that
a*=8up V,(S) > a, > Inf V(S)=a, and
SEGe Segc

{@y, @iC;, @30y, ...} is an inner point of R .
By virtue of lemma 3, there cxists a hyperplane II containing (a*, a,c,,
@:C;, ...) such that II contains only boundary points of ® as their

common points and & lies entirely on one side of I.
Let the hyperplane be

(5.1) @y — %) — 31k @ —ae)=0,

where
kos Kry Boyy o) el®

Because (a,, a.¢;, a,a,, ...) is an inner point of N

(5.2) kya,—a*) <0

Therefore we get k,%-0 and so we can assume k,=1 without Ioss of
generality. From (5.2), for any g e R, we get

(go—a™)— ;: k(gi—ac)=<0.

This means

7=

[fi@do— Sk [afi@is < ax— Shac,
S
that is, by virtue of Assumption (I)

Jtio— Shaf@yis = f (fo(@)— Shaf @)

for any Borel set S. From the last lnequahty, we conclude

Sol@)— gkﬂiﬁ(w) =0 if xe S,
” <0 otherwise.
q.e.d.

Finally we treat the case where ¢ is a boundory point of %°. For this
purpose, we shall introduce some difinitions and prove some lemmas.

Definition. Let & be a non zero element of [®.
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We call £ maximal relative to ¢ if
€ 9=( o forall ge Ro

Definition. Let {€}(¢=1, 2, ...,7) be a finite sequence of elements
of I®. We call it a maximal set relative to ¢, if {§}(=1,2,...,r—1)
is maximal relative to ¢ and

&, 2) = (&, ¢
holds for all points z ¢ ®° for which '

(& 9=, (=1,2,..., r-1.
Definition. We call an infinite sequence {§‘}(¢=1, 2, ...) of elements
of I maximal relative to ¢, if, for any positive integer », {&'}(s, 1, 2,
.., r) is a maximal set relative to c.
Definition. We call {€'}(i=1, 2, ..., ) complete maximal relative
to ¢, if {&}(i=1, 2 .., r) is maximal relative to ¢ and no element
&+t of I® exists such that &+ is hnearly independent of the sequence

{&) (¢=1, 2,..., r) and {&}(G=1, 2,..., r, r+1) is maximal relative
to c.

Difinition. We call {¢}(¢=1, 2,...) complete maximal relative to
¢ if {&'} is maximal relative to ¢ and there exists no element & of I®
such that ¢ is linearly independent of {§}(:=1, 2, ...) and

En=E o

for any geR° for which
&, 9)=(, ¢ =1, 2,...)

LEMMA 5. If c is a boundary posnt of R°, then there ewists a set

§1(t=1,2, ...) of elements of I that is a complete maximal set relative
to c.

Proof. Because c is a boundary point of 2}?’ by virtue of lemma 3

there exists a hyperplaue II cantaning ¢ such that R° lies entlrely on
one side of it.

Let the equation of II be given by
¢, g—0)=0 where Eel®,
Since ®° lies entirely on one side of II , either

(5.8) &, 9—c)=0 for all ge&R°
or
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(5.4) & 9—0¢)<0 for all ge®R°

holds.

Now put &'=—¢, if (5.8) holds, and §'=¢ otherwise. Clearly &' is maximal
relative to c¢. If &' is not a complete maximal set relative to ¢, there
exists € such that & is linearly independent of & and {&!, £%} is
maximal relative to ¢, and so on.

Thus, the proof leads to completion.

LEMMA 6. If {&§}(i=1,2,...) is a maximal set of elements of I®
relative to ¢, and if V(S;)=c, then following two conditions are fulfilled
for all x ¢ B* (perhops except onm a set of measure zero.)

a) If a point x in R" satisfies

i;fi-ajfj(x):o (=1, 2, ..., u—1)
and
i“ §ia;fi(x) >0  for some integer u=1,

then x belongs to S, .
b) If a point x in R" satisfies
S f@)=0 (=1, 2, ..., u—1)
and . )
J_Z.:‘: Eaf(@) <0  for some integer u=1

then x does mot belong to S,.
Proof. Because {£'}(¢:=1, 2,...) is a maximal set relative to c,
&' is maximal relative to ¢, that is,

(&, 9—0)=<0
hence 20€9; =3 ¢a,;  for all geR°
and so 56 [ af @de <31 ¢, [ Fiw)da
! s S

S

f i Ela.fx)dr < [ §aa;f;(x)de  for all Borel set S.
Jg=1 .So

This means
SEafi@) <0 if ves,
=

” =0 if xe§,
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except on a set of measure zero. This implies that for all x (except
perhaps on a set of measure zero) the following condition holds:

z belongs to S,, if ie}a,-f,.(x) >0
=1

x does not belong to S,, if i&}a,-f,-(w) <0.
i=

Thus, condition (a) and (b) of our lemma must be fulfilled for u=1.
We shall now show that if (a) and (b) hold for =1, 2,...., v, then
they must also hold for u=wv+1. For this purpose, consider the set
R) of all points x which has the following property :

iegajj(x)zo for i=1, 2, ..., ».

If R, is replaced by R, then &"*!' is maximal relative to ¢’={0,a,c/,
a.cl, ...} where

- f f@dz  (S\=S_R!
Sn’

Hence, for any z e R! (except perhops on a set of measure zero) the
following condition holds:

zeS), when X&' fi(z) > 0

z ¢S}, when <0
This implies that (a) and (b) hold for w=v+1. This completes the
proof of our lemma.
LEMMA 7. Let {£}(i=1, 2,...) be a complete mazximal set relative

to ¢ and let T be the set of all points g of N° for which
(&, g—c)=0 for ¢=1, 2. ...

Then T is a bounded, closed, and convex set and c is an inner point of T.
Proof. The boundedness and convexity are clear. The closedness

follows from the continuity of inner product of (£, g—c¢) in g.

Let ¢ be a boundary point of 7. Then there exists a hyperplane I7

containing ¢ such that the intersection of iI7 and T contains only boundary

points of 7" and T lies enterely on one side of I7.

Let the equation of /7 be given by (§, g—c¢)=0, where we can say ¢ is

independent of {&§‘}(:=1, 2....), because i/ contains at most boundary

points of 7 in their intersection. Since 7' lies on one side of /7, we

have either
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& g—0c)=0 for all ge T
or
¢, g—0c)<0 for all geT.
Put & =¢ in the latter case, and 3'=—¢ in the former ecase.
Then &, 9—0)=<0 for all geT.
This contradicts with the fact that {§'}(¢=1, 2,...) is a complete

maximal set. Thus ¢ must be an interior point of 7' and our lemma
has been proved.

LEMMA 8. If is a boundary point of R and if {8)(G=1, 2, ...) 18
a complete moximal set of elements of I® relative to ¢, then a necessary
condition for a member S of & to satisfy the Assumption (I), (II) and
(IIT) is that there exists a sequence of real numbers {(k,}(@=1, 2, ...) such
that ﬁk‘f < oo and for all ¢ R' the inequalities
fl@) =2 kfil@) if veS
fo@) < Sk fi(@) if xeS
hold except perhaps on a set of measure zero, where R. is the set of all
points x for which

iepjfj(x)so for i=1, 2, ...

Proof. Let R* be the set of points x which satisfy the following
two conditions,
(5.5) Zéj-ajfj(x):\:o for at least one value ¢,
and ’
(5.6) %}Ejﬂajf () >0 where ¢, is the smallest integer
for which 3 &a,a,f(x)0.
For any Se¢&, let S* be S_(R,—R!

It follows from lemma 6. that R*—(R*__S*) and S*—(R*_S*) are sets
of measure zero. Thus

f fix)do= f f@de  G=0, 1, 2,...)

for all S¢&S. Now, let
fi@)=rf(x) if xe Ry
fi(x)=0 reR, (i=1,2,...)
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and furthermore

c}‘=c,—ff,(a:)da: (=1, 2,...).

Let V*, V*O, R* §i%0 S* gnd SF have the same meaning with reference
to the functions f}(z), f*(), ... and the point ¢*=(0, a,c;*, a.,c*, ...)
as V, V', %, R°, S and &, have with reference to the functions f,(x),
fi(@), ... and the point ¢=(0, ¢,, ¢, ...).

It follows from lemma 6. that for any subset S of R, for which
V%S) is a point of the set T defined in lemma 7, we have

f f(@)do= f,f}*(w)dx+ f f@ds (=0, 1,2, ...)

Since the range of V*(S) is equal to R*® even when S is restricted to
subsets S for which V°(S)e T, R*° is obtained by a translation of the
set T. The same translation brings the point ¢ to ¢*. It then follows
from lemma 7 that ¢* is an interior point of R*°. An application of
lemma 4 gives the following necessary condition for a member S, of
&* to be a member of &y, that is, it is necessary for S, to be a
member of S} that there exists an element {k} (¢=1, 2,...) of [*®
such that, for all z except perhaps on a set of measure zero,

@) = ko fi@) if reS
v =< ” other wise

From the definition of f*(x) it holds that
f@ =S kaf (@) if ceS R
< » if ze (R—S) R

The lemma. follows from this and from the fact that every member
of & is a member of &* and that a member of S of &* is one of G¥
if and only if S is one of &,.
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