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1. When the limitting distribution of the random variable concerned
is used in statistical inference, it is important to know how the distri-
bution fits. On the other hand, the characteristic function is often used
to prove that a sequence of distribution functions converges to some
distribution function. In this case, therefore, it is desirable to know
about the distance between distribution functions from that of charac-
teristic functions. In this note we shall treat this problem. Let Fl(z)
and G(x) be one-dimensional distribution functions and let ¢(f) and
VJr(t) their characteristic functions, respectively. Then we have the
following:

THOREM If F(x) and G(x) have second order moments,
and f '9"(‘)'”"’(‘)' dt=e T=>1, )
then

| Flo)— G(@) | < 2/ lqg,llﬂ, +e  aeK @)

where K ts a set of measure less than 4/ lgg'.’li-j-i
T

It should be remarked that the intergral (1) is always convergent, and
according as we take T larger or smaller, ¢ becomes larger or smaller.
Therefore, in order to minimize the right hand side of (2), we must
chose a suitable 7. As for the set K, roughly speaking, it relates the
discontinuity point of F and G.

2. LEMMA Let F(x) be a distribution function which has the second
order moment, then for any & > 0 we have

3) f" (F@ +8)— Fz—8))dz=25

PROOF: By the Tchebyschef’s inequality we have

1
| F(z +8)— F(z—8) | < inf {1, (+*gi5z“}
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where a is a mean of F(x). Therefore, the integral f °0(F(a:+ 8)— F(x—S))dz

exists. For any real number p, we have

e'# | F(x+8)—F(x—38)| < | Flx+8)— F(xr—8) |=F(x + 8)— Flz —3).
Consequently

o p3c2 o
lim f e 2 (F(z+8)— Fla—8)dz= f (Fla+8)— Flz—8))dx.

o png
Put B,= f ¢ 1 (Flw+8)—Flz—8)da.

Since | F(z)| <1, by the integration by part we get
_r¥z-s3 _Pe+o?
B,= jv (e 2 —e 2 )F(a:)da:

=% [: (@(p( —8) — D(p(x + 8))dF (x)

o 2
where O(x)= f e 3 dx
Now w(x)=¢(0)+x¢'(0)+§¢"(om), 0<6<1)
and ¢(0)=’/§, PO)=—1, |0"(6x)|=16ze 5| <1.
Therefore
_ __!-_ _]; =1 e 8\ _m2 2
| B,—25|=| B, pf2p8dF(w)I§p[N|p(w 8)!—p*(@+8)* | dF ()

1
=—}2“82d =2p(c+8?),
pJ_ p*(2° + 8°)d F(z)=2p(s + &%)

where a= fw 2’ dF(x).

From this we have
lim B,=28,

>0
which proves the lemma.
COROLLARY There exists a set. K such that
Fa+8)—-Fz—-8) <1V8§ w¢K,
and the measure of K is smaller than 21§ .
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Put
K={x: Fw+8)—F(z—8) =18},

then we have _
25 > f (Fl@—8)— Fa—8))dz =1/ s m(K),

for F(z+8)—F(x—38) is non-negative where m(K) denotes the Lebesque
measure of K. Therefore
mK)<2V's.
3. Now, we prove our theorem.
Put

Ve = / log T+1
T
Then by the corollary in section 2, we can find sets K, and K. such

that

m(Kr) <25, mK;)<2V'§
and

Fz+8)—-Fx—8 <1V§ z¢Ksx
Gz+8)—Gx—8) <vV'8s x¢K,.
Set K=K, K;, and we have m(K)<4y/$.
If for any a¢ K, is |F(a)—G(a)| <2V 5 =2,/108 T+1  we have nothing
T

to prove. Therefore we may assume | F(a)—G(a)|=M>21/§. More-
over, we can assume F(a) > G(a) without losing generality.
Then for a+8=>x >a it holds that
F(z) = Fla) .
G@) < G@)+(Ga+8)—G@) < Gl@)+V' &
F@)—G@) = F(a)—Gla)— V' § =M— lzf: 1;4 .

Similarly for a >x>a —8

F(z) > Fla)—V'§

G(z) < G(a)

F@)—G(z) > lzf_

As the second order moments of F{z) and G(z) exist, we have

[ #@) -6y e dx:‘?@;{‘k@‘
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Hence, for any p >0
00 o0 262
f (p(t) ‘I"(t) e g dt__f {(F(x)_G(x))f eﬂ:z—a)t—ﬁTdt}dx

pz(‘_{(z—a) )2

= [" -6 s [Tt

—o0

_V2mr f (F@)—G@)) e # do

» Z.

e 2
=1/2'n'f {F(a+ px)—G(a+px)} e 2 da.

Now F(a+ pr)—G(a+ px) = ]‘21 for [px] < 8.
Therefore

Ve f M- 2dx<1/2-n-f (F(a+pa)— G(a+pa)) € Tdo

A

f(F(a+px) G(a+px)) e~ 2dx\+}f (F(a+2090) G(a+m))dx
(t) ‘P(t) ee ;2;2 l f ?’(t) ‘I’(t) e g p;,z dti

+ ’ f (t) «p(t) oot g~ "n dt‘

<2f e s dx+f ]‘P(t)ltl"’(t)'dt+4f ~~~~~~~~

.A‘

By the inequality f e 2 da: <e :, we get

S
P &2 262
M(vr—e‘zp?)g Jg V' 2 fp e"‘fda:SZe"F+4e S +e.

log T+ 1
Put e C
P="m
and we have
log 7' +1 log 7' +1 log T+1
M(—n-—e‘ 2 )_3_26‘ 3 +4e =z +e.
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Consequently
1
15 e
—e 7 )<6°¢ 4.
M('ﬂ' e 2)=61/T+$
) 1
But ¢ <0.61 7>=8.14 and log7=>0 (T=>1), therefore,
1
25M <38.66—~—+¢
- v'rT

1 logT+1
M<2 - tye<2/08L+1
=205 + / . +

This proves the theorem.
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