DECISION RULE BY PROBABILITY RATIO

BY KAMEO MATUSITA

(Received Aug. 20, 1954)

1. Introduction

As is well known, Neyman and Pearson employed the probability
ratio test to obtain the most powerful test. In the sample space of a
fixed dimension, even by the most powerful test the Neyman-Pearson
theory can not control both the errors, that is, it can control the error
of first kind, but cannot control that of second kind. (This ean at most
be evaluated.) However, when we adopt the sequential test which
Wald developped we can control both the errors. Wald employed there
also the probability ratio test, admitting to take a sample of any size
(see [1]). This probability ratio test was further shown by Wald and
Wolfowitz [2] to have an optimum character in the sense that it has
the smallest average sample number among the sequential tests with
the errors equal to or smaller than those of it. On the other hand, we
have shown in [3] how the smallest risk (the larger of the two errors)
is bounded in the sample space of a finite dimension. This provides, and
assures at the same time, a method of determining the sample size for
obtaining a decision rule with the risk (due to the errors) smaller than
a preassigned value. According to our result we can do always with
samples of a bounded size as long as we are concerned with a given
risk. In adopting the sequential test, therefore, we can also restrict
ourselves to samples of a bounded size. Namely, we can always confine
ourselves to the truncated sequential rule. This can be observed also
from [1], but our treatment is more exact. To state about this
together with Bayes and minimax solutions is the purpose of this paper.
In the following section we shall give a simple proof to the fact that
in a finite dimensional space a probability ratio rule gives a Bayes solu-
tion with respect to any a priori distribution, especially to a least
favorable distribution, and in some case a minimax solution. In section
3, we shall consider a sequential probability ratio rule in a finite dimen-
sional space. The truncated sequential rule is excellent, as is just oboious,
in the point that the sample number is always bounded, compared with
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the non-truncated one, for the sample number in the non-truncated one
may happen to be large.

2. Bayes and minimax solations
Let R be any space, and let Fy(E)= ./; J1(z) dm, E(E): j; fa(@) dm

be two (distinct) distributions in R, where m is a (Lebesgue) measure
in R. When it is known that the random variable X we observe has
distribution F, or F,, suppose we want to decide on the basis of the
sample value which distribution X has. For this purpose, we consider
a decision function or decision rule, that is, a mapping from R onto
D={d,, d,}, where d, denotes the decision that X has F, for i=1, 2.
There are, of course, very many decision rules concerning a problem.
We should, therefore, adopt an efficient one for the problem. To make
clear the meaning of ¢ efficient’’, we introduce a weight function
W(F,, d;). In the sequel, for the sake of simplicity we put
1 when 7=
W(Es d;)= {0 when i%j
(4,7=1, 2)
This means that, in terms of test, we consider the error of first
kind and that of second kind with the equal weight. Other cases are
treated quite similarly as this case. Then, for an a priori probability
p=1{p, ¢} on {F,, F,} and a decision function d=gp(z) we have ‘

(s, )=p [ £:@) dm+aq [ fiz) dm

as the risk, where S={z; d,=¢(z)} and S°=R—S8. This r(u, @) is re-
written as

ru )=~ [(Bf@—afia) dm

Therefore, for p, r(u, ) takes on the minimum value when
S={z; pf()=ef:@)}.
THEOREM I. A Bayes solution with respect to u={p, q} s given by
S.={z; pfi(®) = afr(@)} ¥
Now, let

*) This form is superior to the probability ratio form, since it prevails when fi(x) or
J:(x), p or g attain zero.
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F, 1(Suo) =F, z(S;f,,)
where p,={p,, ¢} is an a priori distribution on {F,, F,} and S,,
={2; pfi(@) = q@fr@)}. Then we have
THEOREM II. For any a priori distribution u it holds that

'l"(p, ¢l&) = T([lo ) §Dp,o)
where ¢, P, denote Bayes solutions with respect to u and p,, respectively.
Therefore, u, i8 a least favorable distribution.
PrOOF: Let u={p, ¢} and
pP=p,+36, §>0

Then we have clearly
SV' ; Ko

So, putting S,=S, +4, we have
T P)=D f fi@) dm+q [ £a) dm

Spo+a

=p[ fi@dm+q[ fie)dm
S';h-A
=pf fi@dm—p [ f@ dn

taffi@ dm+qf fiz)dm

=0, fi@dmta, [ fi@)dm
o 0

+§( [ Fi@dm— . f2(0) dm)
~ @@ —afi@) dm

=1, Pu)— [, ®f @)~ afi@) dm

(according to F(S,)=Fy(S;))
Now, 4= S, therefore

[ @f@—af @y dm =0
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consequently
(g, @) < 1oy Pyy)
For u={p, q} with p=p,—8§, § >0, we have similarly
. (1, o) < oy P
Thus we get
max mjn (s P)=7(ttos Ppy)
THEOREM III. Let S be any set and S,= {z; fi(z) = af(x)} with a>0.

Then, if
(%) Fy(S) < Fy(Sy)
we have

F\(S) = F(S)
Similarly, if
) F\(S°) < F(S5)
we have

Fy(S9) < Fu(Sp)
This is a slight generalization of the Neyman-Pearson’s fundamental
lemma. :

PROOF: For any S we have
FyS)) = Fy(S)=Fy(S~8y) + Fy(S~S)
= Fy(8~8) + aF (S~ S)
therefore
F(8~8)) < a(Fy(Sy)— Fy(S~Sy))

aF (8, ~5°)
F\(8~8°

I

IA

which implies that
F(8)=F(8~8,))+ F(S~8)
<F(S~8)+ Fi(S,~8%)
=Fy(S)
The remaining part is proved similarly.
THEOREM IV. ¢, is a minimax solution.
PROOF: For a decision rule ¢, let
Fy(S°) < F(S)
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‘where S={z; d,=¢(x)}. ‘Then we have
max r{u, ¢)=FyS)

and :
Fy(S,) < F(S)

For, according to the preceding theorem, from Fy(S) < Fy(S,,) follows
Fi(S) = F\(S,), hence Fy(S) < Fy(S,,)=Fi(S;) < F\(S°), which contradicts
Fy(8°) < Fi(S)

‘Therefore, we have
(pos Puy) < max 7(u, @)

“When F(S° > Fy(S), we have the same relation, too.
Now, let
F\(8)=FyS).
If Fy(8°) < F(Sy,), then Fy(S°) < Fy(S;), hence F\(S°) < Fy(S;)=Fy(S,,)
= Fy(S), which is a contradietion.
Therefore, it must hold:

F(S)=Fy(S)=F\(S;)=Fy(S,,)

-consequently

(o> Ppy) < Max r(y, P)
which shows that ¢, is 2 minimax solution.

If F, and F, are continuous distributions, there exists a set S, such

that

Si={z; f1(2) = af(2)}
.and

F1(53)=F2(So)

This S, defines a minimax solution. Further, if F, and F, are unimodal
distributions of one dimension, a set S, with F(S;)=Fy(S,) is uniquely
determined except for a set of m-measure zero, therefore, a minimax
solution is almost uniquely determined. In case there does not exist a
set S, such that Sy={z; fi(&) = afs(x)} and F,(S5)=Fy(S,), a probability
ratio rule does not always provide a minimax solution, as can be seen
from the following example.*

#) I am indebted to my colleague H. Akaike for this part.
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Let F,, F, be {0.2,0.2, 0.6}, {0.1, 0.4, 0.5} on events @), @),
(8), respectively. Then we have

min max {F|(S;), FyS,)}=0.6

where S,={z: fi(x) = af(x)}, and
min max {F,(S°), F(S)}=0.5
where S runs over any subset of {(1), (2), (8)}.

3. Sequential rule
Let FyE)= f fi(@) dm, FyE)= f fi@)dm be two distributions in
E E
R and p the affinity between F, and F}, i.e.,
p= [V F @ VF&) dm.

Further, let d; denote decision that the random variable X we observe
has F; for ¢=1, 2. Then, if we want to make decision d, or d, with the
risk smaller than a preassigned positive number ¢, we have only to take
a sample of size n with p” < ¢ and adopt a minimax solution. For we
have then

F™(S%) <e

F(S) <e
where S={(z, ..., ,); fi(@) ... fi@) = @) ... fol®:)} and F™, F
are the extentions of F), F, into R,={(z,, ...,)}. In case F, and F,
are continuous, a minimax solution is given by

S =@ - @) 5 Fi(@) - fi(@a) Z af (@) - . fo(@))
with F™ (S)=F5™(S,).

Fi™(S)=F{(S)=r.<p"<e¢

Let S; be generally a set in the k%-dimensional space which gives a.
minimax solution, and denote the risk of the minimax solution by 7,.
Then we have

P20 22T =

Now, with a sequential rule ¢ in R,, there is associated a system
of sets {A4,, By} (k=1, 2,..., n) such th_at A= (@, ... )5
P@ss. .., 2)=d,} and B,={(z,, ... 2,); @&, ... %) =d,}. This system
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{A; B,} has the property that 4,, B.&R:, A.~B,=0 (k=12 ..., n)
and A,+B,=R,. Conversely, any system {A,, B} with this property
defines a sequential rule in R,. The average risk of decision rule
{A;, B,} with respect to an a priori probability x={p, ¢}, which takes
into account the sample number, is then given by
'r(/‘: ¢):p{§Fl (Xl € All"" Ty eees (‘Yu ceey ch~l) € AI':-1"\BZ-1 ’
. (‘er -.--’ -X;:)EBE)
+Ckz_;kF1 (Xl. € A?’“ 19 v . (X.la ey -er—l) € AZ—IABZ—I »
] (X,,...,Xk)eAR+B,)}
+e{BF XK AnBL L K- Ke) €48~ BL
(X5, Xp) € Ay)

+eSTRF, (X, € AnBL, .., (Ko oo Xo) € AL Bl
. X,)eA,,+B,)}

where ¢ denotes the cost of one observation. We should, therefore,
adopt an optimum decision rule concerning this r(u, @). Further,
{A,, B,} is desirable to be easily defined. As to this point Wald’s
definition of the sequential probability ratio test for a given strength
is eminent, although it does not exactly have the given strength (see
[1]). With this consideration in mind, for an arbitrarily chosen positive
number ¢ which is smaller than 1 and an integer n, we put

A= (@ ey 3 Fi®) - Fil@)= lefzm) R ACA)

Bi={(®y, ..., z); fil®) ... fil@w)= Efo(xy) ... fa(22)}
k=1,2, ...,n—1)

A,=8,

Bn=S; )
Then we hgve

THEOREM V. The system {A,, By} (k=1,2,..., n) defines a

truncated sequentical rule with the risk due to the errors in inference
smaller than &+ p". %

The average sample number aceording to this rule is not so different
from that of the sequential probability ratio test with Ai={(@), ..., %);

*) Concerning this see [1].
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@) fim)= —i—fs(xx)‘ .- fu(@)} and Bl={(z,, ..., %)} @) .. F@)<

Sox) - fo(z)} Or Al= {(5?1; s x.); filx,) .. -fx(xk)—zlgefz(xx)- . fz(%)}

and BY={(z,, ..., %); fi(@) .. fl(xk)él g @) - ful@n) (h=1,2,...ad.

inf.) when ¢ is not so large. Due to the above theorem, if we want
to make decision with the risk due to the errors smaller than &, we
have only to take £ and » such that &+ p"<e. Therefore; if we want
to make n small, we must make & also small, and if we want to make
¢ large, we must make n also large. However, since it holds that
€+p"=¢ for n not so small we can actually employ

Al = {(x,, s 85 i@ . i) = %fz(xl) .. .fz(x,,)}

BY'={(x,, ... 2 @) [i@) - filmd S efo(@) .. fula)
*=12,..., n—1)
AV ={@y, ooy @a); [1(@) - fr( @) = fo@) L Fo@a)}
Bl ={@, ..., %,); fi(zy) .. Sil®n) < fo@y) .. fo(@a))
for that purpose. ’

_(z—mgy

(x—my)?
1 1 2 and

For example, let fi(z)= 1/?2;6— 2, fz(=¢)1/2.4

£=0.05. Then we have in case |m,—m,|=>1,

e+p" <0.051° for n=56
e+p"<0.064 for n=>45
and, in case |m;—m,|>2, ‘
e+p"=<0.051 for n=>=14
€+p"<0.0564 for n>12

as the bounds of the risk due to the errors in adopting our rule.

Thus far, we have explained sequential rules in which decision is
made after each observation. But our rules apply in these forms to a
case where at eaeh stage a group of observatians are made at the same
time. Moreover, it is not necessary for our rules that all observations
are independent of each other, if the afﬁmty in R, concerning F, and
F, tends to the zero as &k — .

We shall now refer to the case when a sequentlal rule gives advan-
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tage. Let ¢, denote the cost of a thing to be inspected when observation
(inspection) destroys the thing inspected, or zero otherwise, and ck+c,
the labor of observation (inspection) for a sample of size k. Then, if
we adopt the rule defined by {A,, B}, the expected value of the cost
and labor is

©) (erteate) STRF(X, € AnBy o) Koy s Kacs) € Aiei~ By

(X ..., X e A+ By
or

(e (e;+cotcs) > EF(X ¢ AA~B, ... (X .o Xow) € AiinBicss
(Xl’ ce ey -Xk) € Ak+Bk)

On the other hand, if we adopt a non-sequential rule, with the same
risk due to errors in inference the value of the cost and labor is

) - en+emntc,

where 7 is the sample size in the non-sequential rule. Therefore, we
obtain a profit by adopting the sequential rule when (C;) and (Cy) is
smaller than (C,). In the case where the average sample number of
the sequential rule is about 7/2, the sequential rule is advantageous
when ¢,+¢, >¢,. However, when adopting a non-truncated sequential
rule, care must be taken in managing only with the average sample
number, for we may have a large variance of the sample number.
The rules above mentioned apply, of course, to the case where d;,
d, are decisions concerning two classes of distributions, each of which
has a representative distribution in the sense of lemma 3 in [4].
Further, the case where several (more than two) distributisns are
essentially concerned, are similarly treated as above (see [3]).
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