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1. Introduction

The purpose of this paper is to give some treatment of the problem
of testing a composite hypothesis against a simple or composite alter-
native. In testing a hypothesis, it is very desirable to know bounds of
errors, because, even if the most powerful test is adopted, it is often
that we cannot obtain the exact value of the power of the test. How-
ever, we can easily get them by means of the affinity which was in-
troduced in [1]. Thus far, A. Wald, E. L. Lehmann, C. Stein and
other authors treated the problem of testing the composite hypothesis
by introducing a measure in the set of probability distributions which
makes the composite hypothesis. Especially, Lehmann and Stein [3],
[4] reduced the composite hypothesis to a simple one under some
conditions. In this paper we also set some conditions on composite
hypotheses, which would be natural, and our idea of formulating hypo-
theses is applicable to non-parametric-cases. The bounds of possible
errors of our test are easily obtained, although it is not always most
powerful. Further, we can do without introducing any measure in the
set of probability distributions. Our treatment runs along the line of

papers [1], [2].

2. Definitions and fundamental lemmas

First we give the fundamental lemma of Neyman and Pearson for
the sake of completeness of description.

LEMMA 1. (Neyman and Pearson) Let f(z) and g(x) be two proba-
bility density functions defined in a space R and let k be a constant and
W a region in R such that

kf(x)<glx) in W
kf (z) = g(z) in R— W
Then, +f W' 18 a region such that

@ [, f@do= [ f@ds,

(2.1)
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we obtain

), s@dass [ g@da.

LEMMA 2. Let /; V f(@)(@)dz=p and W the same region as in

lemma 1. Then we obtain

I f@)de < P
.[, o@)dz=1-vV'kp

PrROOF: From (2.1) we have

[ r@asf Jre fas L [ viewws.

Therefore

(2.8)

[ f@ds< £

Similary

‘/; g(a:)dz:l—./;_w g(m)dx;l—j;-w V'kf(x)g(x)dx
g1~1/l€£ V(@) o(x)de

Therefore
_[w 9@ de=1-V%p

Now, weldefine a metric in the whole set 2 of absolutely conti-
“nuous probability distributions as follows:

@4 dF, R)=IF-Fi={ [ «F@-VFe a}

where F, and F, are any two elements with density functions f,(z),
JSa(x), respectively (see [1]). For two sets w,={F'} and o,={G} of 2,
we define the distance as
(2.5) d(w,, w,)= inf d(F, G)
, Fews
G €uwy
Then, we obtain the following
LEMMA 8. Let H, be the hypothesis that the random 'va.rzable
(X, -+, X,) is distributed according to a distribution function F in w,,
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and let H, be the alternative that (X,, ---, X,) 18 distribuled according
to a distribution function G in w,. Let d(w,, w)=d, > 0. If there exist
F) in w, and G in o, such that

(2.6) d(Fy, G)=d,

2.7 F(W)=F(W), GW)=GW)

Sor some W= {(z), ---, xn); kfo(@:, -+, Tn) L Go(®s, -+, T0)}, and for
any element F in o, and any element G in »,, where f(z,, -+, x,) and

9o(zy, -+, T,) are density functions of F, and G,, respectively, then we
can use W as a critical region for testing H, against H, and we obtain

(2.8) F(W) <

1/1.: Po
2.9) GW)<1-V'Ekp,
Jor any F in o, and G in »,, where p, 18 the affinity between F, and G,.

This lemma is simply showed by lemmas 1 and 2.

Generally, for testing efficiently a hypothesis H, that the true
distribution is contained in o, against a hypothesis that the true
distribution is contained in », on the basis of a finite number of obser-
vations, it is necessary that o, and o, are discriminated from each other
so that d(w,, ;) >0. To discriminate w,, w, from each other, we want
to employ F,, G, which satisfy (2.6) and (2.7) as discriminating distribu-
tions. Then, the above lemma serves as fundamental. In the continuous
case, we can take Gaussian distributions, for instance, as F, and G,.
This is why we give examples concerning Gaussian distributions in the
following section.

3. Examples
PROBLEM 1. Let (X, -+-, X)) bea sample Jrom a Gaussian population
with unknown mean & and varzance 1. Test the hupotheszs Hy: {§< —¢}
agawnst H,: {§=¢]}.
Under hypothesis H, the joint probability density function of
, X, is '

1 \ - b i
3.1) (—1/—2_—”—) 8 2 where & < —e¢.

and under hypothesis H, it is

(3-2) Vom 2 where &, > ;.
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Then the affinity p(&,, §;) between (8.1) and (8.2) is

1 ‘:: _ 2z — 6P+ @ -4
(2,)" ). e 4 day e

e =81 \?
(2,1)7‘ “‘ 1)2’“( i) da,

_ Méo—§1)
EY) 8
Therefore, when §=—¢ and & =¢, p(§,, &) assumes its maximum value
and consequently the distance d(&,, &) is minimum.
The most powerful critical region for testing N(—e, 1) against
N(+¢, 1) is given by

» n
2

k(%>?e“2?ﬂ(;'+eyg (21_7) 'e 2-1(‘54 D

that is,

SVai(@e e~ (@ — o)
2

v

e k

or
2¢e anzs =>logk.
i1

When we denote this critical region by W, it is obvious that the
condition (2.7) is satisfied for a suitable k. Therefore, we can use W
for such % as the critical region for testing H, against H, and the
errors are bounded as follows:

L

size of W< p(—e 8 e 2,

VE Vk

1—power of W=<V'k p(—¢, e)=Vke 2

Now, we want to remark that we can treat quite in the same way
Hj and H! which consist of all distribution functions satisfying the con-
dition (2.7), respectively.

PROBLEM 2. Let (X, ---, X,) be a sample from a Gaussian population
with unknown mean § and variance 1. Test the hypothesis Hy: {|§] < 5}
against H,: {1§| =}, where n—n,=€>0.

Under hypotheses H, and H,, the joint probability density functions
of X,,---, X, are
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n Siwi(@—£9)?

(8.8) (17%—;> e~ 2 (&= m)
n 2?-1(371‘51)3 )

(8.4) (#) e” 2 (161 =)

' (8o~ £0*
respectively. The affinity p(§,, £,) between (3.8) and (8.4) is e~ 08 .

Therefore, it attains its maximum value p, at &,=7,, §,=2, and §=—z,,
§,=—n,. The most powerful critical region W; for testing N(y,, 1)
against N(z,, 1) is easily obtained by lemma 1 as follows:
_S(we—20)? D=1
e 2 =ke 2
> (’71—770)(23’1"")0_")1) =2logk

23, ===~ 210g'k +7(n0—2n1)

Similarily we get the most powerful critical region W, for testing
N(—n,, 1) against N(—y,, 1), that is,

237 < [ZIng +n(770+7)1)]

Therefore, we may take the set-theoretical sum W of W, and W, for
the critical region for testing H, against H,. Then

ne2

size of W__I/ po—l/.k_e T8

S . ne2
power of W=>2(1—-V'k po)=2(1—l/k e‘T)

PROBLEM 8. When the population is Gaussian N(0, ¢%) with mean 0
and unknown variance o°, test the hypothesis H,:{0 < o®*=<a?} against the
alternative H,; (b < o® < ¢t} where a and b are given mumbers such that
0<a<b.

According to hypotheses H, and H,, the joint probability density
funections of sample (X;, .-+, X,) are respectively.

- DN
8.5) (zjmg)* e 2 (0<di=a?)
1)
= 3zl ‘
86) (i) e o oD
l .
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The affinity p(sy, o,) between (3.5) and (3.6) is <w2;’_fx_g)’*‘ as is easily
00T Gy

calculated. Also we can easily verify that p(s,, ,) attains its maximum
value at si=a?, oi=>".

The most powerful critical region W for testing N(0, a?) against
N(O b®) is given by

o) F s ()

b2
that is,
Sai> Za’bz(log'k+nlogb-——nloga)
bz_az
Since we can easily verify that the condition (2.7) in lemma 8 is satis-
fied by taking % suitably, we can use W as the critical region for testing
H, against H,. Then

1 2ab \T
size of W=<=1/k (a2+b‘)

+( 2ab \%
power of W= l—l/k (;2—:6;)
PROBLEM 4. When the population is Gaussian N(&, o%), test the
hypothesis H,: (£ <ec, 0 <o®<a’} against the alternative H,:{§>d,
o* =b%}, where a, b, ¢, and d are given numbers and b > a, d—c=¢ > 0.
Under the hypothesis H, and the alternative H, we have the joint
probability density funetions of X,, --., X,

1 \7 _Z@=¢&)°
(3.7) ( 271_03) 2] 2’0’ . (O < Oy é a2, e é C)
and

1 \F - S(@—&P
(38) ( o Ve T =t ez

The affinity p(&,, ao; &, b) between (8.7) and (3.8) is

2. \» _nle—¢)?
(i) o wemn.
As can easily be seen, p(§, g,; &, b) attains its maximum value at §,=¢,
El—d and 0'0
The most powerful critical region W for testing N(c, a?) against
N(d, b* is obtained in the following form
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r _S@=ad? R M R
R

that is,

" —e)t —d)t b

After a simple calculation, this becomes

i __bc—a’d\? a?d® [ e 2__ 2 b
g(x, o ) > T —aiy ln(c d)2+2(b q)(log'k+nlog a)}.

and we get

size of Wg a?; d, b

power of W =1—V'k ¢(c, a*; d, b%)
» ne?
NN A

where p(c, a?; d, b)_<a2+b2) e .

The condition (2.7) is satisfied for W, H, and H, when taking a
proper value of k.

PROBLEM 5. Let H, be the hypothesis that two independent random
variables X,, X, have the same Gausstan distribution, i. e., the distribution
of (X,, X,) has the density function of the form

_23-1 (24 “mo)2
24% :

S, 2)= fl;f(mi =

Let H, be that (X,, X,) the alternative hypothesis has any distribution Sfunc-
tion with density

_ 2{2=1 (z, —m()?
e 24%

9@y, )= 2 1

'71'0'2

where the point (m,, m,) lies more than &, distant Jrom. any point
(my, m;). Then, test H, against H, on the basis of a random sample of
size n.

To treat this problem we employ the set'
: . 2 {(@g—me)? - @y — My}
W:{(ﬂ;n’...’xm’ 521,"',x2") k< 20& 2 o e }
as the critieal region. The point of this set satisfies

5 +‘/n280" log k < @,—%,)
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and vice versa, where o
7 —Fut -+, 7 Tt -+
Fy=-UT " Ton  F=
n n

As to the affinity p between two distributions with f(z) and g(z),
the size ¢ of W, and the power 5 of W we have

_nh
P max. =€ 847
Y
(%) g < Pmax. 1 e 8

7 vk
_ne
-7)<1/k P nmx. =Vke 8

If we put 80=];7'i'n_, where % is any number, then () is rewritten as
h2
1 -8
L i
~V'k
and
hs
1—-1) =vk e

Therefore, when we wish to test the hypothesm of the same distribution

against the alternative which is defined by the distribution functions

more than 8.,:1/5% distant from any distribution function with density
1 E;Ey(xs—’mo)“'

oz 20° and moreover, when we wish ¢ < 0.05, then putting
mo

k=0.764, 3.5—7_<7z,—7, defines a wanted critical region. In this

vV
case 1—7 < 0.0384.

The following examples are taken from our experiment on effec-
tiveness of the warm-shades made of the agricultural vinyle over
Japanese cedars and Japanese cypresses. In autumn, 1953 we got the
following data of the length of their young plants.

{Japanese cedars)

the sample mean for the vinyle treatment z,=388.27
the sample mean for the control treatment z,=28.06
' Z,—Z,= 5.21

8.5s =2.17 unit: ecm

Vn
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where s is an unbiased estimate of &
{Japanese cypresses )

the sample mean for the vinyle treatment z,—23.62
the sample mean for the control treatment x,=19.17
Eg“il: 4-45

—?/’—5% =1.79 unit: cm

These results seem satisfactory to reject our hypothesis of the same dis-
tribution. Still more, this test is applicable to the case where the
tail of any distribution in H; which is nearer to the alternative dis-

tribution is covered by a Gaussian distribution for some suitable %, or
any devised o,(¢=1, 2).

(Case: ¢£=0.05)

h 4 5 6 7 8 9
vk 2.707 0.874 0.222 0.044 0.068 0.0008
1-9= 0.365 0.0385 0.0024 0.001 0.000002 0.00000

% 3.536 3.466 3.536 3.687 3.885 4.125
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