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Summary

In Part I the Khintchine’s uniqueness theorem for the class -conver-
gence of probability distributions is proved in a natural way by making
use of inverses of distribution funetions; its generalization to the multi-
dimensional case is also proved; relations between different paired
sequences of scaling constants and centering constants in limit problems
of probability distributions are given; and the general method to deter-
mine scaling constants and centering constants is presented.

In Part II both an analytical derivation of the P. Lévy’s canonical
form of the infinitely divisible multi-dimensional probability distribution
and a necessary and sufficient condition, for the distributions of sums
of asymptoticaly uniformly negligible independent multi-dimensional
random variables to converge to a given infinitely divisible probability
distribution are given. The logarithms of non-vanishing characteristic
functions are treated rigorously.

In Part III various versions of the multi-dimensional central limit
theorem on sums of independent random variables are studied.

The results in the last two parts are extensions of the known
facts in the one-dimensional case to the multi-dimensional case.

Introduction

Let G, and G, be two p-variate distribution functions. If there are
a positive number ¢ and a p-dimensional vector b such that G,(r)=
G(ax+b) for all z e R,, then G, and G, are said to belong to the same
class. Let us denote by K[G] the class containing a distribution
funetion G.

In the theory of probability it occurs very often, that for a given
sequence of p-dimensional random variables {S,}, there exist a sequence
of positive numbers {a,} and a sequence of vectors {b,} such that the

* Most of the results in the Part I of this paper have been given in the writer’s
previous papers: On the convergence of classes of distributions, Ann. Inst. Statist. Math.,
Tokyo, 3, 7-156 (1951); A metrization of class-convergence of distributions, loc. cit., 5, 1-7
(1953); On the many-dimensional distribution functions, loc. cit., 5, 41-58 (1953).
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sequence of the distributions of S,/a,—b, converges to some distribution.
Let F, be the distribution function of S, and let G be the distribution
function of the limiting distribution. Then the distribution function of
S,/a,—b, is given by F,,(q,.:v+a,.b,.) and we have
(1) lim F,(a,%+ axb,) =G(x),

at every continuity point of G(z). Under these circumstances, for any
positive number a and any p-dimensional vector b it holds that

lim Fo(,0% + G,ab + a,b,) = G(az + ab)

at every point of continuity of G(ax+ab). Thus, in limit problems of
probability distributions, limit classes rather than limit distributions
appear. When (1) holds the sequence of classes {K[F,]} will be said to
converge to the class K[G], a,, a,... will be called scaling constants,*
and by, b,,... will be called centering constants or centering vectors. A
limit problem of probability distributions is always a limit problem of
classes.

In limit problems of probability distributions we have interests in
(i) the uniqueness of the limit class of a convergent sequence of classes,
(ii) relations between different paired sequences of sealing eonstants and
centering constants, and (iii) a general method to determine sequences
of scaling constants and centering constants. (i) was first proved by A.
Khintchine [14] in the one-dimensional case, (ii) is known in the one-
dimentional case, and (iii) has been treated under more or less restric-
tive conditions. In Part I of this paper a simple natural proof for the
Khintchine’s uniqueness theorem is given by making use of inverses of
distribution functions, a unified treatment of (ii) is given, (iii) is re-
searched with no restrictive conditions, and furthermore the extensions
of these results to the multi-dimensional case are also presented.

In the study of limit distributions of sums of independent random
variables, it is natural to put the condition of asymptotic uniform
negligibility, and under this condition the limit distributions are proved
to be infinitely divisible. Hence it is useful to investigate the conditions
for the sequence of distributions of normalized sums of independent
random variables to converge to a given infinitely divisible distribution.
Although considerable attensions have been paid to this problem in the
one-dimensional case, there are few known in the multi-dimensional case

" %ay, a,... are called normalizing factors (Normierungsfaktoren) by W. Feller [6].
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except for the P. Lévy’s canonical form of the infinitely divisible
distribution. According to P. Lévy [16], §62, the logarithm of the
characteristic function of a infinitely divisible p-dimensional probability
distribution is given by

(2) «l»(i)=ia't—_;_t'at+ [ (¢ -1-—2 Y a
2y

1+2'%

where o is a p-dimensional vector, ¢ is a non-negative definite matrix of
pth order, and v is a p-dimensional measure with

lz2dy < oo, f dv <
1(<1 izt
In (2), ¢, a, and z denote column vectors, ¢/, a’, and #’ their transposes,
ie.,

tl a, zl
t=| .1, a=| .}, z=| .1,
Ly Ay Ty

t'=(t1, ey tp)s a":(au- .oy ap)’ a:’=(a:1, ceey xp)s

the usual matrix notation is used, and || denotes Euclidean length of
2. This canonical form was found from the point of view of the theory
of the additive process. Part II of this paper gives an analytical deri-
vation of (2) and a necessary and sufficient condition for the sequence
of distributions of sums of asymptoticaly uniformly negligible independent
p-dimensional random variables to converge to a given infinitely divisible
distribution. Our method follows M. Loéve [17]* in the one-dimensional
case.
Following A. Khintchine [18] let us put

_ 'z
"(E’—{ Teaz
then (2) is rewritten as
. 1 it'x
(8) Y(t)=1ta't——t'ot + e —1—
peos f

with

we \ 1+a'z
_uwr du,
1+a:’:c) 'z #

WRy)< oo, p({0})=0.

* Japanese readers may refer to the appendix of Y. Kawada [12], an exposition of
M. Loéve [17] by the present writer.
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Analytically (38) is preferable to (2) as x has finite total measure while
v may have infinite total measure. The point, in which the multi-
dimensional case differs from the one-dimensional case, is that the inte-
grand in the right side of (8) has no determined limit as x tends
to 0.

Part III of this paper investigates the various versions of the
multi-dimensional central limit theorem, which states that the sum of
asymptotically uniformly negligible independent random variables, under
appropriate restrictions, is nearly normally distributed. The general
convergence theorem in Part II and the knowledge on scaling constants
and centering constants in Part I are applied to this problem. The
multi-dimensional central limit theorem has been treated by H. Gramér
[1], C.G. Essen [5], and W. Hoeffding & H. Robins [10] etc., but the
literature which deals with the complete generalization of the well-
known versions in the one-dimensional case seems to be scanty.* On
various versions of the central limit theorem in the one-dimensional
case, readers may refer to W. Feller [8] and M. Loéve [18].
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Part I Class convergences of distributions

1. Distribution functions and their classes

A measurable funetion X, defined on a probability space 2, and
taking values in R,, p-dimensional Euclidean space, will be called a »-
dimensional random variable (p=1, 2,...). Let us write X=(X,, X,,...X},)
where X is the jth component of X, j=1, 2,..., p. Then
(1-1) F(x)=F(xb Loyevas x,,)=P1‘ {Xj(w) Sz.}’ j=1, 2’- <o D}
is defined for all z=(=,, %,,..., x,) in R,, where Pr{.--} means the
probability of the «» set defined by the condition {---}. The function F
defined by (1.1) is called the distribution function of the p-dimensional
random variable X=(X,, X,,..., X,).

In case p=1, F is monotone non-decreasing, continuous to the right
and
lim F(z)=0, lim F(z)=1.

Any function F satisfying all these conditions will be called a one-
variate distribution function.

In case p>1, the function F defined by (1.1) is monotone non-
decreasing and continuous to the right in each variable and

lim F(xl,. ey wp)=0, j=1’ 2’- LIRS p’

Zj>—oo
lim F(Z'I,. ey xp)=1)
Zyy ooy Zp >0

(¢ 7P D .
(Fl=[F1. "7 >0, for 2,<y, j=12...,p.

Here [F']? is defined by
(12) [F1i= 3 (~ 17 Fw),
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where v,=(vy, Vi,..., vy) (=1, 2,..., 2°), each v, is either z; or y,, and

n(v,) denotes the number of lower simbols z, among the co-ordinates of

v;. [F']Y is the pth difference of F and the evaluation in terms of F of
Pr {z,<X(w) <y, 7=1, 2,..., p}.

Any function F' satisfying all these conditions will be called a p-variate

distribution function.

A probability measure defined on B,, the family of all p-dimensional
Borel sets, will be called a distribution in R, or a p-dimensional distri-
bution. )

If X is a p-dimensional random variable, the p-dimensional distri-
bution P defined by

P(A)=Pr {X(w) € A}, AeB,
is called the distribution of the p-dimensional random variable X.

A p-variate distribution function F defines a p-dimensional distri-

bution P

P)=[-- [aFGa, ..., 2,

and conversely P defines F'
F@)=P(ly; y,<z,, 3j=1,2,...,p})
where z=(z,,..., %), ¥=1..., Yp) and {y:C} denotes the set of y
satisfying the condition C.
Let P,, P,,... be p-dimensional measures with distribution functions
F,, F,,..., and let P be another p-dimensional measure with distribution
function F. Then lim P,(A)=P(A) for every set of continuity of P, if

and only if lim F,(x)=F(x) at every point of continuity of F. When

these equivalent conditions hold the sequence {P,} is said to converge
to P, {F,} is said to converge to F, and these are written as lim P,=P
and lim F,=F, respectively. The definition of distance between two p-
variate distribution functions G, and G, that matches this convergence
is the following

(1.3) d(Gy, Gy)=min {e; Gi(@¥—ee)—e < Gy(x) < Gy (T +c€) +¢, for all z € R,}

where e=(1, 1,..., 1) ¢ B, and min {¢; C} denotes the least ¢ belonging
to the set {¢; C}. Under this definition the space of all p-dimensional
distribution functions is a complete metric space, and lim F,(x)=F(x)

at all points of continuity of F if and only if lim d(F,, F)=0 (see [20]).
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If a sequence of distribution functions {F,} converges to a distri-
bution function ¥, then we have hm F,,(x 0)=F(z) at every point of

contmulty of F. We shall prove thls in the one-dimensional case because
of the simplicity of writing. Let z, be a point of continuity of F, then
for any given ¢ > 0, there exists a § > 0 such that

(1.4) Fa)—e < Flwg—8—0),  F(@,+5—0) < F(x;)+e.

For this & there exists an integer N such that d(F, F,.) <8 for all
% => N, that is,

Fa—0)—8<F(x) < F(x+8)+8, —ow<zx<ow, mn=>N,
hence
1.5) Flz—8—0)—0<F,(z2—0) < F(x+8—0)+5, —owo<x<ow, n=>=N.
From (1.4) and (1.5) it follows that
Flz))—e—8 < F(x,—0) < F(x,)+¢+38, n = N.
Since ¢+8 can be chosen arbitrarily small, we have h»ni F(x,—0)=F(x,)

which completes the proof.

Let F' and G be two p-dimensional distribution funetions. If there
exist a positive number a and a p-dimensional vector b such that

F(ax +b)=G(x) for all z ¢ R,

then we write F'~ G. This relation ~ satisfies the equivalence relation:
F~F;if F~G then G~ F; if F~G and G~H then F~H, There-
fore all p-variate distribution functions are classified by letting ¥ and
G belong to the same class if and only if F~G. Throughout this
paper classes of p-variate distribution functions shall be interpreted in
this meaning. Two distributions in R, are said to belong to the same
class if and only if the corresponding distribution functions do so. A
class of distribution functions and the corresponding class of distributions
will be identified if no confusion occurs.

A sequence of classes {K,} will be called to converge to a class K,
if a sequence of distribution functions {F,}, each F, being chosen
adequately from K, for each n, converges to some distribution function
F' belonging to K. A p-dimensional distribution will be called unit
distribution if the whole probability 1 is placed in a fixed point in R,
otherwise non-unit distribution. When p=1, ‘unit’ or ‘non-unit’ may
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be replaced by ‘improper’ or ‘proper’*. A distribution function will
be called unit or non-unit, according as the corresponding distribution
is unit or non-unit. All unit distribution functions form a class which
will be called unit class. Other classes will be called non-unit classes.

Throughout this paper, whenever more than one random variable
is involved in a discussion, it will always be assumed, unless the contrary
is explicitly stated, that the random variables are all defined on the
same probability space 2.

2. Inverse functions of one-variate distribution functions

Throughout sections 2-4 it will always be assumed that any distri-
bution function is one-variate.
Let F' be a distribution function and define f by

2.1 f@)=max {z; Flz—-0)<y}, O<y<l.

Then f is a finite-valued function defined on the open interval (0, 1), f(¥)
is non-decreasing with y, and f is continuous to the right: f(y)=f(y+0),
O<y<l1.

To see the last equality hold it is sufficient to show that f(y) =
f(y+0). Now for any positive number ¢ such that y<y+e<1, we have,
by the definition of f(y+¢), F(f(y+e)—0)<<y+e, hence, F(f(y+0)—0)
<y+e Letting ¢ 0 we have F(f(y+0)—0) <y, hence, f(y+0) <f(y).

The function f defined by (2.1) is called the inverse function of the
distribution function F.

LEMMA 2.1
(2.2) z<f(y) if and only if Flx—0)<y,
283 2x=f(@y—-0) if and only if F(x)=>y,
2.4) < f(y—0) if and only if F(z) <y,
(2.5) x> f(y) if and only of F(lx—0)>y,

2.6) Sfly—-0)<z<f(y+0) if and only if Flx—0)<y < F(z+0).
Notice that both F' and f are continuous to the right.

* In the previous paper [20], I used also in the multi-dimensional case the term ‘improper’
or ‘proper’ in the same meaning as ‘unit’ or ‘non-unit’, defined above. But it seems better
not to do so, for usualy ‘improper”’ or ‘proper’ is used in the same sense as ‘singular’
or ‘non-singular’, that is, a multi-dimensional distribution is called improper or proper
according as there exists, or does not, a hyperplane in which the whole probability 1 is
placed.

i AL SIS i
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PROOF: (2.2) and (2.5) are immediate consequences of the definition
(2.1). To prove (2.3), assume that z>=f(y—0). Then for any ¢ > 0 we
have x+e¢ > f(y—e), hence, F(x+e—0) >y—c by (2.5). Let ¢} 0, then
F(x)>=y. Conversely F(z) =y implies = f(y—0). Thus (2.3) is proved.
(2.4) is equivalent to (2.8). (2.6) follows from (2.2) and (2.3).

From (2.8) and (2.4) we have the following

THEOREM 2.1 A distribution function F is uniquely determined by its
wnverse function f. More explicitly, it holds that

2.7 Fg)=max {y; fly—0) <z}, —Lr<L o,
We notice the following facts.
LEMMA 2.2

(2.8) fly—0)=min {x; Flz+0)=y}, O<y<l.

(2.9) Flx—0)=min {y; fly+0) =<}, —wLrL oo,
(2.8) follows from (2.3) and (2.4); (2.9) follows from (2.2) and (2.5).
LEMMA 2.3

(2.10) If y< F(x), then f(y)<u=.

(2.11) If < f(y), then F(x)<y.

(2.12) If y>F(x—0), then f(y—0)==z.

(2.13) If ©>f(y—0), then Flz—0)=y.

To prove (2.10), assume that y<F(x). Then y<F(zx+e—0) for any
¢>0, hence f(y)<x+e¢, which implies f(y) <z. The others will be proved
similarly. .

Now, we have the following theorems.

THEOREM 2.2 Let f be the inverse of a distribution function F. Then
the inverse of F(a(-+Db)), where a is positive and b is real, is equal to
fla—b.

PrROOF: Put Fy=F(a(-+b)) and fix y, 0<y<1. Then

Fy(f@)/a—b—0)=F(f(y)—0) <y.

Hence
(2.14) i) = f(®))a—b,
where f, denotes the inverse of F,. Similarly we have

W) = af\(y)+ab
from which it follows that

(2.15) f1) < f@)/a—b.
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(2.14) and (2.15) imply
fi(»)=f(y)/a—b.

THEOREM 2.8 Let fa(n=1, 2,...) and f be the inverses of distribution
Sfunctions F, and F. Then lim f,(y)=f(y) at every continuity point of f

of and only if lim F(x)=F(x) at every continuity point = of F.

The ‘if’ part is stated in Y. Kawada [12], p. 182, without proof,
and its special case is proved in P. Lévy [16], §43.

PROOF: To prove the ‘if’ part, suppose that lim F,(z)=F(x) at every
continuity point ¢ of F and let y, be a continuity point of f. Write
2,=f(Y,). As f is continuous at point y, for any given ¢>0, we have

z,—e<f(Y,—0), S@W+0)<zo+e.
From Lemma 2.1 it follows that
(2.16) F(x,—e) <y, < F(z,+¢).
If x,+¢ are both continuity points of F, we have from the assumption
lim»F,,(:vo+e——O)=F(xo+e),
(2.17) lim F(z, — &)= F(@,—¢).

7% -» o0

From (2.16) and (2.17) it holds that for sufficiently large N,
Fo(@y— &)<y < Fu(x, +¢—0), n=N,
which implies, from Lemma 2.1, that
To—e< fal¥)<T,+e, n=N.
Sinece ¢ can be chosen arbitrarily small, we have
Tim.£,(0) =% =F(¥0),

which completes the proof of the ‘if’ part. The ‘only if’ part is
proved in the same way.

THEOREM 2.4 If a distribution function F'is strictly increasing in an
open interval a<x<b, then its inverse f is continuous tn the open interval
Fla—0)<y<F(b+0).

PROOF: Fix y, such that F(a—0)<y,<F(b+0). We shall prove that
Fy)=f(y,—0). Case (1): when Fla+0)<y,<F(b—0). Write z,=f(y,—0)
and 7,=f(¥,+0). Then from Lemma 2.1 we have
(2.18) F(x,+0) >y, = F(z,—0), o<, < x,<b.

If o, <z, by the hypothesis F'(z,+0) < F'(x,—0) which contradicts with
(2.18). Therefore z,=z, or f(¥,—0)=f(y,). Case (2): when F(a—0)<y,<
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F(a+0). Since for any ¢<0, Fla—0)<y,<F(a+c—0), we have fly,)=a.
From F(a—0)<y, and (2.12) we have f(y,—0)=a. Hence f(¥,—0)=r(%,).
Case (3): when F(b—0)<y,< F(b+0). The proof runs in the same
way as in Case (2).
As an immediate concequence of the theorem we have the following
COROLLARY If a distribution function F' is strictly increasing in the
interval I={z; 0<F(x)<1} then its inverse f is comtinuous in (0, 1).

3. Uniqueness theorem for class convergences: the one-dimensional case

Throughout this and the next sections we shall use the following
notations: ¥F and G with or without a subscript denote distribution
functions; f and g denote their inverses; if F' and G possess subscripts,
the same subscripts will be used for their inverses f and g; U denotes
the distribution function of the unit distribution which places the whole
probability 1 in the origin; & with or without a subsecript denotes a
positive number; b with or without a subscript denotes a real number.
If not otherwise stated, limits will be considered for n—=o.

First we shall note the special role of the unit class.

THEOREM 3.1 Any sequence of classes converges to the unit class.
More explicitly, for any sequence of distribution functions {F,} there
exists a sequence {a,} such that lim F,(a,- )=U.

This was first proved by A. Khintchine [14] and the proof is easy.

Now the A. Khintchine [14]’s uniqueness theorem for class conver-
gences can be stated as follows.

THEOREM 3.2 Assume that

lim F,=F, lim F(a,(- +b,))=G,
and that both F and G are non-unit. Then the limits
lima,=a>0, lim b,=b
exist and it holds that G=F(a(-+b)). Hence, F' and G belong to the same
class. ‘

PROOF: Let f,, f, g be the inverses of F,, F, G, respectively. By
Theorem 2.2 the inverse of F,(a,(-+b,)) is given by f,/a,—b,. From the
hypothesis and Theorem 2.8 it follows that

8.1) lim fo()=£(¥),
(3'2) lim fn(y)/an_bn::g(y)
at every continuity point of f and g, respectively. By the assumption,
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F and G are non-unit, therefore neither f nor g is constant. Hehce,
we can choose y; and y, such that 1>y,>y,>0, f(¥)>f(¥,), 9)>9¥.),
and that both y, and y, are common continuity points of f and g, so
that both (8.1) and (8.2) hold for both y=y, and y=y,. By making
differences we have

lim {fu(y:) = fa2)} =f Y)—f(¥:) >0,

lim {f.(¥,)—fa¥2)} /2 =9(y,) — 9(y.) >O0.
By taking the ratio we have
8.3) lim a,= ¥ =FW) _g(say) >0,

9Y)—9(Y>)
Form (8.1)/(8.8)—{8.2), then
lim b, =f(y)/a—9(y)=b(say).

This holds for every common continuity point y of f and g. Since f
and g are both continuous to the right, we have f(¥)/a—g(y)=b for all
Yy, 0<y<l. Therefore we have g=f/a—b, and this together with
Theorem 2.1 and Theorem 2.2 implies G=F(a(- +b)).

THEOREM 8.3 Assume that lim F,=F. (It makes no difference whether
F' 1is non-unit or unit). Then
(i) #f lima,=a>0, lim F(a, )=F(a-);

(ii) #f lima,=+ o, lim F,(a,-)=U;
(iii) 4f limb,=b, lim Fo(- +b,)=F(- +b).

This is known (for instance, see H. Cramér [2], p. 254), and is
easily proved, for instance, by making use of the inverses of distribution
functions. ’

According to Theorems 8.1 and 8.2, if a sequence of distribution
functions {F,} converges to a non-unit distribution function F, and if for
some sequences {a,} and {b,} the sequence {F,(a,(-+b,))} converges to
a distribution function, then the limit distribution function must be
F(a(-+b)) or U(- +b) for some a and b. With respect to these circum-
stances we have the following two theorems.

THEOREM 8.4 Assume that lim F,=F and that F is non-unit. Then

(8.4 lim Fo(an(- +bx))=F(a(- +b)),
if and only if 7
(3.5) lima,=a,  limb,=b.

This was first proved by B. Gnedenko [9], §3.

A
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PROOF: Since the ¢if’ part is an immediate consequence of Theorem
‘8.8, it is sufficient to prove the ‘only if’ part. Assume (3.4). Accord-
ing to Theorem 3.2 the limits

lima,=a’ >0, lim b, =b’
exist and we have
F(a(- +b))=F(a'(- +b))
from which it follows that '
fW)a—-b=f(y)la’'-b, O0<y<]l.
Since F' is non-unit, f can take at least two different values, therefore,
it must hold that a’=a and b'=b.

THEOREM 3.5 Assume that lim F,=F and that F is non-unit. Then

lim Fn(an(' +bn))=U(' +b)
of and only if
lima,=+ o, lim b,=b.

The ‘if’ part follows from Theorem 8.8; the ‘only if’ part is proved
by taking the inverses of distribution functions.

The normal distribution with mean m and variance v is denoted by
N(m, v). It is convenient to denote by N(m, 0) the unit distribution
which has the whole probability 1 placed in the point m. As an ap-
plication of Theorem 3.2 the following fact is proved.

If a sequence of normal distributions N(m,, v,) tends to a dzstmbutzon
L, then the limits

(3.6) lim m,=m, limv,=v
exist and
3.7 L=N(m, v)

(K. Ito {111, p. 187)

PROOF: Let G denote the distribution function of the normal distri-
bution N(0, 1), then the distribution function of N(m,, v,) is given by
G((- —my)/Vv,). Let F denote the distribution function of the limit
distribution L. Moreover, let us write G,=G, n=1, 2,.... Then we
have

lim G,=G, lim G,((- —m,)/V'v,)=F.
If F' is non-unit, from Theorem 8.2 the limits (3.6) exist and we have
F=G((-—m)/v/v) from which (8.7) follows. If F is unit, by Theorem
8.5 there exist the limits (3.6) with =0 and we have F=U(-—m),
from which (8.7) follows.
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4. Scaling and centering constants: the one-dimensional case

Now we want to determine the sequences of scaling and centering
constants. For this purpose, we shall discuss about dispersions and
centres of distributions which will play important roles as scaling and
centering constants, respectively.

We shall begin with the dispersions of distributions. Let F be a
distribution function and let @ be its characteristic function. Then the
mean concentration function ¥r, introduced by K. Kunisawa [15], of F'
is defined by

(4.1) 2O=Lf etlpW)Pdl, 0<i<o,
1]

It is easily shown that

4.2 ) z—f’ P g 0<i<

4.2) 0= g, ,

where F=Fx{1—F(—-)} is the symmetrization of F. From (4.2) it is
seen that ?, is a non-decreasing and continuous function defined on the
open interval (0, ) and we have

0<P() <1, Tu(eo)=1,
Zx(+0)=F(+0)~ F(—0)=3175\=x (say),

where the p,’s are the jumps of F at all its points of discontinuity.
Obviously

(4.3)

<, if Fis non-unit ;
(4.4) - . . .
Ip=1, if F is unit.

Now let us put
QF(O) = QF( + 0)’
P()=0, for 1<0.
Then ¥, is a distribution function. The inverse function Dy of ¥ is
called the dispersion function of F. The value of Dy at a point a will
be called the a-dispersion of F'.

We shall need the following properties of the dispersions.

LEMMA 4.1 For any distribution function F, its dispersion function
Dy is non-negative and continuous. ILf F i3 unit,
(4.6) Di(a)=0, 0<a<l.
If F' is mon-unit,

(4.5)
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4.7 Dp(a) >0 of and only if a>3s,
where X, 18 defined by (4.3). Moreover 3 is tnvariant when F runs over
the same class.

PrROOF: If F'is unit 2.(0)=1, (=0, =0, <0, from which (4.6)
follows. Next, assume that F' is non-unit. In this case ¥, is strictly
increasing in the open interval (0, «), therefore, D must be continuous
in (0, 1) by Corollary to Theorem 2.4. (4.7) follows from (2.4). The
last part of the lemma is clear.

LEMMA 4.2 Dra.inf@)=a"" Dp(a).

LEMMA 4.3 ' DF‘*FS(G)ZDFJ(G), ji=1, 2,
where F,x F, denotes the convolution of F, and F,.

LEMMA 4.4 If lim F,=F,

4.8) lim Dy (a)=Dg(a), O<a<l.

These properties of the dispersions are deduced from the following

corresponding properties of the mean concentration functions.

? rea w(D)=2r(al),

QFI#FQ(I) S q’l"j(l)’ j=1) 2’

lim &.,()=%.(), 0<li<1.
. Furthermore, we can prove that if F, is non-unit then
e r (D)< Pr(l), Jor all 0<li< oo,
and :

Dyl*ps(a)>Dp1(a), for all a>x Pk Eg

Note that (4.8) holds for every point in the interval 0<a<1, as D, has
no point of discontinuity. This is the reason why we use the Kunisawa’s
dispersions instead of the P. Lévy’s dispersions, inverses of maximal
concentration functions.

We must now turn to centres of distributions. For any distribution
function F, the real number ¢ defined by

4.9) f arc tan (x—c) dF(x)=0

will be called the centre of F and will be denoted by c=c(F). Any
distribution function ¥ with ¢(F)=0 is called to be centered. As is
easily proved, centres have the following properties.

LEMMA 4.5 c(F(- +b))=c(F)—b.

LEMMA 4.6 If lim F,=F, limc(F,)=c(F).




52 i KINSAKU TAKANO

(See J. L. Doob [4], p. 408).

As it was noted in Lemma 4.1 the 3 defined by (4.8) is determined
by the class K containing F, so that it can be denoted by X.,. Clearly
Yx=1, or <1 aceording as K is unit or non-unit.

In the sequel we shall denote by a a constant such that 0<a< 1.
Let F be a distribution function with Sr<a. Then Dy(a)>0 by Lemma
4.1. Put D=Dg(a), and c=c(F(D-)). Then the F(D(- +¢)) is a centered
distribution function with a-dispersion 1. Let F(a(-+b)) be another
centered distribution funetion with a-dispersion 1. Then we have
Dja=1, ¢—b=0, so that F(a(- +b))=F(D(- +¢)). Thus we have

LEMMA 4.7 Assume that K is o class with Sy<a. Then a centered
distribution function, belonging to K, with a-dispersion 1 exists and 1is
uniquely determined.

Now we can determine scaling constants and centering constants in
limit problems of distributions.

THEOREM 4.1 Let K,’s (n=0, 1, 2,...) be classes with >y ,<a. For
each n let F, be the centered distribution function, belonging to K,, with
a-dispersion 1. Then lim K,=K, if and only if lim F,=F,.

PrROOF: It is sufficient to prove the ‘only if’ part. Assume that
lim K,=K,. Then there exist G,’s such that G,¢ K, (n=0,1,2,...) and
lim G,=G,. Put D,=Dg(a). Then D,>0 (»=0,1,2,...) and lim D,=D,
by Lemma 4.4. According to Theorem 3.3 we have lim G,(D,-)=Gy(D,-).
Put ¢,=¢(G(D,-)). Then lime,=¢, by Lemma 4.6. Hence lim G, (D,(- +c,))
=Gy(Dy(+ +¢,)) by Theorem 3.3. By Lemma 4.7 we have Gp(D(: +¢,)) =F.,.
Therefore lim F,=F,.

We shall mean by the a-dispersion and the centre of a random vari-
able X, the a-dispersion and the centre of the distribution function of
the X, respectively, and we shall denote them by Dx(a) and ¢(X). The
dispersion and the centre of a distribution is defined by the correspond-
ing ones of the distribution function of the distribution.

COROLLARY 1 Let {X,; n=1, 2, ...} bea sequence of random variables
with positive a-dispersions. Assume that for some sequences {a,} and {b,}
the distribution of X,/a,—b, comverges to a distribution L with positive
a-dispersion. Then the distribution of X,/D,—c. converges to the centered
distribution, belonging to the same class with L, with a-dispersion 1, where
Dy=Dx, (@) and c,=c(X,/D,).

COROLLARY 2 Let {X,; n=1,2,...} be a sequence of random variables
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with positive a-dispersions. If for some sequence {a,} the distribution
function of X,la, converges to a distribution function F with positive a-
dispersion D, then the distribution functions of X,/D, converge to the
F(D-). ,

Let f be the inverse of a distribution function . Then any number
m satisfying F(m—0)<%<F(m+0), or equivalently fG—0)<m<f(%+0),
is called a median of F. Let {F,;n=0,1,2,...} be a sequence of
distribution functions and let m, be any median of F, for each n. If
lim F,=F, and if the median of F, is uniquely determined, then we
have lim m,=m, by Theorem 2.8. Let us note that if a distribution
function belonging to a class K has the uniquely determined median,
that is, if its inverse is continuous at the point %, then every distri-
bution funection belonging to the class K has this property.

As a result of these accounts we have the following

THEOREM 4.2 Let the hypotheses of Corollary 1 to Theorem 4.1 hold.
Moreover, assume that the median of L is uniquely determined, and let
m, be any median of X, for each n. Then the distribution of (X,—m,)/D,
converges to the distribution, belonging to the same class with L, with
median 0 and a-dispersion 1.

5. Uniqueness theorem and scaling and centering constants: the multi-
dimensional case

Now let us generalize the results of the preceding two sections to
the multi-dimensional case.

Let F, F(x)=F(z,,..., z,), be a p-dimensional distribution function

and let F,, F,..., F, be its one-dimensional marginal distribution func-
tions defined by

F(&= lim F¢ 2,...,2,), F.()= lim F@,§ %,...,%),...
22, e TpF oo ], 23, +er , Tp> O

F,,(E): lim F(mh T2ye ey Tpo1s E)) —oo<f< o,
xl‘ -.-,Zp_l-)w

We shall call the convolution of the marginal distribution functions
F*=FxFyx---+F, the trace distribution function (or briefly trace) of the
p-dimensional distribution function /. Then we have:

(i) A pdimensional distribution function F' i3 non-unit if and only
if its trace F'* is mon-unit.

(ii) If the trace of a p-dimensional distribution function F 18 F'*, the
trace of F(a(- +b)) is F*(a(- +b,+ - - - +b,)), where a>0 and b=(,,..., b,).
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(iii) Let Fy(n=0,1,2,...) be p-dimensional distribution functions
and let F} be the corresponding traces. Then lim F,=F, tmplies lim
Fe=F}.

The last (iii) follows from the fact that if F, converges to F, any
marginal distribution function of F, converges to the corresponding
marginal distribution function of F, (see, for instance, [20 , Lemma 3)
and from the continuity of the convolution.

By the dispersion function of a p-dimensional distribution function
F, we mean the dispersion function of the trace F* of F. We denote
by D the dispersion function of F' as in the one-dimensional case, so
that Dp=Dp*.

Let F be a p-dimensional distribution function, F,,..., F, its one-
dimensional marginal distribution functions and ¢,..., ¢, the centres of
F,,..., Fy, respectively. The vector ¢=(c,...,c,) will be called the
centre of F. If the centre of F' is 0, F is called to be centered. We
denote by ¢(F) the centre of F.

"We have the following

LEMMA 5.1 For any p-dimensional distribution function F, its dis-
persion function Dy 18 non-negative and continuous. If F is unit

Dx(a)=0, O<a<l.
If F is non-unit.
Dy(a)>0 f and only if oa>3.,
where 3, 18 defined by 3=+, F'* being the trace of F. Moreover 3,
18 tnvariant when F runs over the same class.

In the remainder of this section, it will always be assumed, unless
the contrary is explicitly stated, that F and G with or without a
subscript denote p-dimensional distribution functions; a with or without
a subscript denotes a positive number; b with or without a sub-
script denotes a p-dimensional veetor ; U denotes the distribution function
of the unit distribution which has the whole probability 1 placed in the
origin, i.e.,

1, if ;= 0 for all j,
0, if x, < 0 for some j.

We have the following lemmas, extensions of those in the one-

dimensional case.

LEMMA 5-2 Dp(a.,',b)(a):a—le(a).
LEMMA 5.3 Dpvl*p’(a) = Dpj(a), J=1, 2.

Uz,,..., x,):{
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LEMMA 6.4 If lim F,=F, lim Dp(a)=D(a) at every point a in
O<a<l1.

LEMMA 5.5 ¢(F(- +b))=c(F)—b.

LEMMA 5.6 If lim F,=F, limc(F,)=c(F).

By making use of these lemmas we can generslize the results of
sections 3 and 4 to the multi-dimensional case. Before doing so, we
notice the following

THEOREM 5.1 Any sequence of classes converges to the unit class.
More explicitly, for any sequence of distribution functions {F,} there exists
a sequence {a,} such that lim Fi(a,-)=U.

This is easily proved (see [20], Theorem 4).

THEOREM 5.2 Assume that lim F,=F. (It makes no difference whe-
ther F' is nmon-unit or unit). Then:

(i) if lima,=a>0, lim Fy(a,-)=F(a-);

(ii) 4f lima,=+ o, lim F(a,-)=U;

(iii) <f lim b,=b, lim Fo(- +b,)=F(- +b).

PROOF: To prove (i) and (iii), we shall prove that if lima,=a>0
and limb,=b then lim F, (a,- +b,)=F(a-+b). Assume that lima,=a>0
and lim b,=b. Let x be a fixed vector. Then lim (a,z+b,)=ax+b. Hence
for any positive number ¢ there exists a number N such that for all
n=>N

ar+b—ece<ax+b,<axr+b+ece, -
where e=(1,1,...,1) ¢ R, and (z,,..., 2,)<¥,,...,Y,) means that z,< y,
for all j. Then
F(ax+b—ce) < F(a,x+b,) < Fy(ax+b+-ee), n=N.
Therefore, if ax+b=+ce are both continuity points of F, it holds that

F(az+b—ee) < lim inf Fy(a,x +b,) < lim sup Fy(anr +b,) < F(azx+b+<e).

As ¢ can be chosen arbitrarily small, we have
lim F(a.x+b,)=F(azx+b)
if z is a continuity point of F(a-+b).

To prove (ii), assume that lim a,= + . Fix an z=(=,...,s,). Case
(1): z,>0 for all j=1,2,...,p. For any positive number a there exists

a number N such that a,z>ae for all n=N. Then F,(a.x)=F,(ae) for
n=>N. If ae is a continuity point of F, it holds that lim inf F,(a,x)=>

2>

F(ae). Letting a—< we have hm 1nf F(a.x) =1, from which we have
lim F(a,x)=1. Case (2): z;<0 for some 7. For any positive number a,
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there exists an N such that a,r,< —a for all n>=N. Denote by F,;
and F; the marginal distribution functions of F, and ¥, with respect
to the jth component, respectively. Then we have F,(a.x)<F,(—a) for
n=N. If —ais a continuity point of F, it holds that lim sup F,(a.r)

n>0

< F;(—a). Letting a—>c, we have lim sup F,(a,x) <0, which implies

lim F(a,x)=0.

THEOREM 5.3 Assume that
(5.1) lim F,=F,
(5.2) 1im Fo(an(+ +b0))=G

and that both F' and G are non-unit. Then the limits
lim a,=a>0, lim b,=b

exist and G=F{(a(- +b)). ‘

PROOF: Since F' and G are non-unit, -<1 and 3;<1. Take an a
such that max (Xy, J¢)<a<1, and put

D,=Dg(a), D=Dg(a), D' =Dy(a).
Then Dgyapcesrw(@=Dp/an. By Lemma 5.4, (5.1) and (5.2) imply
lim D,=D, lim D,ja,=D",

from which it follows that

(5.8) lim a,=D/D'=a (say)>0.
From (5.1) and (5.3) it follows that
(5.4) lim F,(a,-)=F(a-),

by THEOREM 5.2. Put ¢(F,(a,-))=cn, c(F(a-))=c, and ¢(G)=c’. Then (5.4)
and (5.2) imply
lim ¢,=c, lim (¢,—b,)=¢/,
by LEMMA 5.5 and Lemma 5.6. From the last two equations we have
(5.5) lim b,=c—c¢'=b (say).
From (5.4) and (5.5) it holds that
(5.6) lim Fo(@.(+ +b.))=F(a(- +b))
by THEOREM 5.2. Comparing (5.2) and (5.6) it is seen that
G=F(a(- +b)).

THEOREM 5.4 Assume that lim F,=F and that F is non-unit. Then
lim F(an(- +b,))=F(a(- +b)) if and only if lima,=a and lim b,=b.

PROOF: The proof runs in the same way as in Theorem 38.4. It is
sufficient to prove that if F(a(-+b))=F(a'(- +b)) for a non-unit F' then
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a=a’ and b=0". Assume that F(a(- +b))=F(a’(- +b')) and that F is non-
unit. Take an a such that D.(z)>0, and put D=Ds(a). Then from
F(a(- +b))=F(a'(- +b")) it follows that D/a=D/a’ which implies a=a’. Put
c=c(F(a-)). Then F(a(: +b))=F(a(- +b")) implies c—b=c—1b’, hence b=¥".

THEOREM 5.5 Assume that lim F,=F and that F is non-unit. Then
lim Fo(a.(: +b,))=U(- +b) if and only if lim a,= + = and lim b,=b.

PrOOF: The ‘if’ part follows from Theorem 5.2. To prove the ‘only
if’ part, assume that F,(a.(-+b,)=U(-+b). Take an a such that
Dy(a)>0 and put D=Dp(a), Dy=Dp,(a). Then we have lim D,=D and
lim D,/a,=0, hence, lima,=c and lim Fy(a,-)=U. Put c,=c(F,(a,-)),
then we have lim¢,=0 and lim (¢,—b,)=—b, hence lim b,=b.

THEOREM 5.6 Let K.n=0,1,2,...) be classes with 3y,<a. For
each n(=0,1,2,...), let F, be the centered distribution function, belong-
ing to K,, with a-dispersion 1. Then lim K,=K, if and only if lim F,=F,.

The dispersion and the centre of a p-dimensional random variable
or a p-dimensional distribution are defined by the corresponding ones of
its distribution funection.

COROLLARY 1 Let {X,; n=1,2,...} be a sequence of random variables
with positive a-dispersions. Assume that for some sequences {a,} and {b,}
the distribution of X,la,—b, converges to a distribution L with positive
a-dispersion. Then the distribution of X,/D,—c, converges to the centered
distribution, belonging to the same class with L, with a-dispersion 1, where
D'n=Dx,.(a) and C,.——'C(X,/D,.).

COROLLARY 2 Let {X,; n=1,2,...} be a sequence of random variables
with positive a-dispersions. If for some sequence {a,} the distribution
Junction of X,./a, converges to a distribution function F with positive a-
dispersion D, then the distribution function of X,/D, converges to the F(D-).

THEOREM 5.7 Let the hypotheses of Coroliary 1 to Theorem 5.6 hold.
Moreover, assume that the median vector of L is uniquely determined,
and let m, be any median vector of X, for each n. Then the distribution
of (Xo—my)/D, converges to the distribution, belonging to the same class
with L, with median 0 and a-dispersion 1.

Part Il Infinitely divisible distributions

6. Preliminaries

A measure, non-negative completely additive set function, which is
defined on all p-dimensional Borel sets will be called a p-dimensional
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measure. Let {u,] be & sequence of p-dimensional measures with
pn(Rp)< oo and let u be another one with u(R,)< . If
(6.1) lim po(B)=u(E)
for every set E of continuity of u, {u,} will be said to converge to u
and it is written as lim p,=g.  Note that lim p,=p implies lim p,(R,)
=u(R,) for R, is a set of continuity of any bounded measure.

If u is a p-dimensional measure with u(R,)< o, its Fourier-Stieltjes
transform is defined by

6.2) P(t)= f ¢'* dp.
Rp

The Fourier-Stieltjes transform of a p-dimensional distribution will be
called a characteristic function of the distribution.

The following fundamental properties of Fourier-Stieltjes transforms
of p-dimensional measures will be used. Let u with or without a
subscript denote a p-dimensional measure with w(R,)< o and let ¢ be
its Fourier-Stieltjes transform. If u possesses a subscript, ¢ will have
the same subsecript.

(i) o 28 continuous for all t and
| () | < p(0)= u(R,).
(ii) u %s uniquely determined by .
(iii) If lim p,=u and if f is a bounded continuous function defined
on R, we have ‘

lim [ f@) dun= [ f@) dp.

(iv) lim gu=9 if and only if lim p,=n. And in this case lim @g(t)
=@(t) uniformly in every bounded t set.

(v) If lim @u(t)=Fk(t) exists for all t and k(t) is continuous at the
origin then p,—~ some p and k=¢. (For one-dimensional case see, for
instance, H. Cramér [1], p. 121, additional note, or M. Loéve [17],
section I, Lemma A).

(iv) and (v) are called the P. Lévy’s continuity theorem. We shall
give a proof of (v) in the end of this section.

(vi) Let @, and o, be the characteristic functions of distribution func-
tions F, and F,. Then the characteristic function of the convolution
F\+F, 18 given by ¢,p,.

Throughout parts II and III, unless the contrary is explicitly stated,
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the following notations will be used: F, with or without subsecripts,
denotes a p-dimensional distribution function; U denotes the distribution
function of the unit distribution which places the whole probability 1
in the origin; for a point z=(z,,..., x,) in B,, |z| denotes its Euclidean
norm, i.e.,
(6.3) |z |=(@i+ 23+ - - +23)"7,
and ||z|| denotes the greatest of the absolute values of its components,
ie.,
(6.4) llz|l=max (|2, |Z:], ..., %y ]).

Let {F,;!=1,2,...,1,n=1,2,...} be a sequence of distribution
functions. If
(6.5) lim max d(F,, U)=0,

nroo 1<I<ip
where d(F, U) is defined by (1.8), then F,, 1=1,2,..., 1, will be called
to converge to U uniformly in I(1<[<1,) as n—>c. It is easily seen
that (6.5) holds if and only if for each ¢>0

(6.6) lim max f dF.(z)=0,
o Yz
and this is equivalent to the condition that for each ¢>0
6.7) lim max f dF, (@) =0.
[z] =€

Lastly we shall give a proof of (v) following P. Lévy ({16], pp. 49—
50, in the one-dimensional case, for the completeness. Let Hix)=
H(z,,...,,) be a real-valued function defined on R,. If H,...,x,) is
monotone non-decreasing and continuous to the right in each variable,
and if [H]Y=> 0 (see (1.2)) for every 2=(z,,. .., %,) and every y=¥,,. .., ¥»)
such that z;<y, j=1,2,...,p, then H will be called to be positively
monotonic. We need the following

LEMMA 6.1 Any sequence of distribution functions {F,} has a sub-
sequence [F) which converges to a positively monotonic function H(x)
at every continuity point of the latter.

PROOF: By the well-known diagonal method we can choose a sub-
sequence {F%} such that for each rational point r e R, lim F)(r)=H\r)
exists. H,(r) is defined only for rational points » and it is obvious that
0<H(r)<1 and Hy(r)=H,(ry7s,..., T, is monotone non-decreasing in
each variable. Using this H, define a function H by



60 KINSAKU TAKANO
H(x)=ir;f Hyr), =x¢R,

where (ry,...,7y) > (2, ..., %,) denotes that r, >z, for all j. Then
Hz)=H=,,...,z, is monotone non-decreasing in each variable and
0 <H(z) <1. For any fixed point z and for any positive number e
there exists a rational point s such that s>z and H(s)< H{x)+e, from
which it follows that H(z) < H,(r) < H(x)+¢ for any rational point r
such that r<r<s. Thus we have

6.8) | H@)=lim ()

and H(z) is continuous to the right. Let z=(z,, ..., z,) and y=(¥y, . .., Yy)
be two points of R, such that z, <y, for all 5. Choose e=(ey, ..., &) and
8=(8, ..., 8,) such that z+¢ and y+6 are rational points and O<e<s.
Then [F]}{]>0. Letting n—>co, we have [H,]’**>0. Further, letting
840, we have [H]?=0 by (6.8). Thus H is positively monotonic. It
remains to ascertain that F(z) converges to H{z) at every continuity
point z of the latter. To prove this, fix a point z. Choose e=(gy, ..., &p)
and 8=(8,, ..., 8,) such that ;>0 and 8,>0 for all  and that both z—e
and z+3& are rational points. Since z—ec<z <248,
Fi(x—¢) < Fli(z) < Fl(z+9).
Letting n—«, we have
H{x—2¢) < lim inf Fi(z) < lim*sup Fi(z) < H(z +3).

Letting ¢ 0 and letting 8| 0, we have
Hz—0)< ]ir’x.l*iixf Fli(x) < lirg sup F(z) < Hz)
which implies that if z is a continuity point of H, then
lim F(x)=H(z).
PROOF OF (v): If £(0)=0, then k=0, u,~0, hence, (v) holds. If %(0)=:0,
then we can assume that all u,’s are probability measures without loss

of generality. Since %(¢) is continuous at the origin and %(0)=lim Pa(0)=1,
for each positive number ¢ there exists a §>0 such that

((zis)pf k(t)dtlzl—_;.

e <6
Since _
lim f Pu(t) dt= f k(t) dt,
NPT Jen<é

there exists a N=N{(¢) such that
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&
6.9) ‘(28)p1|¢|1sf"()dt|>1—§’ for all n>=N.
Now
[ Zal®) dt]| dt “'»d,‘,,[—] don [ ""‘dt
'u/:usc '{:nsa‘/z; f ;;z ‘
s} i “"dt|+’ [ e dt]
LI[(! .{;HSG IIzIIZI 'u/:uss !
25)?
<@ dw+@ [ dp,
L”<‘ l8 ‘{;"21

from which it follows that

1
(6.10) ould) dt{ dpnt L .
(28)" hen<s ‘Il/ﬂ:ll<’ la
From (6. 9) and (6.10) it follows that for each >0
(6.11) | f dpp=1— ¢

2l <

for all n = N=N(e) and for all [ = L=L(c)=38/(e8). Now F,, F,,... be
distribution functions defined by the probability measures u,, gsy... .
By Lemma 6.1 there exists a subsequence {F,;} which converges to a
positively monotonic function H{z) at every continuity point of the
latter. We can prove, from (6.11), that H is a distribution function.
Since H is positively monotonic and 0 <X H{z) <1 it remains to prove
that

6.12) hm inf Hz,,...,z,)=>1,
vy Tp>
(6.13) llm sup H(a:,,. co Tp) <0, j=1,2,...,p
Zj-» — o0

Take a point (y,,..., ¥,) such that miny,>L. Then there exists a ! such
that miny;>{>L and that the point (/,...,[) is a continuity point of
H. Since

F,.. .,Z)zf dpa=1—c, n=N,
ep<i
letting n—>c through the sequence {n(j)}, we have
H(l’. ey l)Z 1_5)
hence
Hy,...,¥p)=1—¢, if miny;>L,
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which implies (6.12) Next, fix %,...., ¥, Y;s1,..., Y, arbitrarily and
let y;< —L. Then there exists a continuity point (z,,..., 2,) of H such
that ¥, <z, k=1,2,...,p and 2;< —L. Then :

Fn(z,,...,zp)sf dun<e, n=N,
izl =L
and letting n—>co through the sequence {n(j)} we have
H(zb- ey zp) =g,
hence
Hy,,..., yp) e, if < —-L,

which implies (6.18). Thus H must be a distribution function. Write
H=F, and let @ be the characteristic function of F. Then from
lim F,;,=F it follows that lim @, ;=@ by (iv). Hence k=¢ and, since

jroo Jroo

F is uniquely determined by ¢, any convergent subsequence of {F,} must
converge to F, hence, {F,} itself must converge to F.

7. Continuous amplitudes of non-vanishing characteristic functions

Let z be a complex number different from 0. Any real number 6
such that z=|z| ¢ is called an amplitude of z and is denoted by §=amp z.
ampz is determined up to the multiple of 2. If #=ampz and
—m<0=<m then 6 is called the principal amplitude of z and is denoted
by Ampz. Let @ be a characteristic function. A function 6 will be
called continuous amplitude of ¢ if

7.1 6(t)=amp @(t) for all te R,
@D 6 is continuous in R, and 6(0)=0.
LEMMA 7.1 Any non-vanishing characteristic function @ has a con-
tinuous amplitude, which is unigquely determined by .

PROOF: (i) First, we wish to prove that, for each 7'>0, there exists
a function 6, {6(t); |¢| < T}, satisfying (7.1) in the domain {¢;|t|<T}.
Since any continuous function defined on a compact space attains its
minimum value there, we have

7=min | ?(t)l >0.
As ¢ is uniformly continuous in {¢;|¢| <T}, to this 5 corresponds a
8>0 such that
lpt)—pt) |<n, for |t—t'|<s, |t|<T, |t'|<T.
Hence
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(7.2) |p@)/eth—11 <1 for 1t—=t'|<§, 1ELI<T, |t'|<T.

Fix at’ such that |¢/| <7T. Then the function ¢(t)/@(t’), of ¢, is continuous
and takes values in the right half plane in the domain [t—¢'| <8, 11| <T,
hence, the function of ¢

(7.8) Amp (gt)/p(t)) (¢’ fixed) is continuous in [t—t'|<8, |t|<T,
and vanishes at t=t/. Furthermore,

7.4 ]A o®) o™ p_g| <5, [t<T.
(7.4) mp(p(t,) < 5 I | [tl
Now let £, be any fixed unit vector, i.e., |f,|=1. We shall define 6(f,r)
in the interval 0 <+ < T, as follows:

O(tr)=3" Amp_q’—m~+Amp-M for n8 < r < (n+1)5,
k=1 P((k—1)8t,) p(ndt,) n=0,1,2,....
If »=0, the first term in the right side vanishes. Thus, 6(¢) is defined
for all ¢ with |[¢] <T and it is seen that

(7-.5) 0(t)=amp ¢(t), for all ¢ with |¢|<T,
(7.6) 6(r:t)—O(rit)=Amp (p(rt)/p(r:l)), if |rt—7t| =<3,
where ¢ is a vector and r, v, are real numbers. (7.5) is obvious from
the definition of 6(f) and »(0)=1. To show (7.6), we can assume that
t is a unit vector without loss of generality. Moreover, we can assume
that || =], | and == 0 as (7.4) is true and ¢ can be replaced by —1
if necessary. Then the following three cases can occur:

Case (@) 0<md <7 <r,<(n+1)8, for some n;

Case (b) 0<md<m, < (®+1)8 <+, < (n+2)5, for some 7n;

Case (¢) —8<m =<0<r,<8.
For instance, in case (b), we have

6(rot)—O(rt) = Amp LLOFT DY) | oy, Plral) gy P(rad)

P(ndt) P((n+1)8) P(ndt)
— P(75t) -
=Amp “olrid) (mod 27).

But by (7.4) v
| the second side — the third side | < 1123'-= .

Therefore ‘="’ becomes ‘=", and (7.6) holds. In the other cases it will also
be proved similarly.

Now we can show that for any ¢, and ¢, such that |¢{,|<T and
[t 1<T,
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(7-7) o(tl)‘_e(tZ):A‘mp (‘P(tl)/¢(t2)); if [t —2,1 <38.
Fix t, and t, and take a positive number n such that || <n, ||
<mnd. .It is shown by induction that

kt kt,\ _ okt /n)
7.8 ol <L) -0 2 |=Amp —~ Y2 for £k=0,1,2,...,n,
(7.8) ( " )~ ( n )=Amp okt ) O 8
‘which becomes (7.7) if k=n. In case k=0 it is clear. Assume that
(7.8) holds for some k<n. Then we have

o) o410

=[o(* 5 e) o)+ [0 ) o )]+ o) -o(* )]

=A p((k+1)¢,/n) A p(kt,/n) A p(kty/n)
TP o) T gltafn) | (et 1)tafm)

a (Bt D)

=AmP - et Degm)

By making use of (7.4), ‘=" becomes ‘=’ and we have (7.8) with %
replaced by 4£+1. Hence (7.7) holds. From (7.8) and (7.7) it is seen
that 6 is continuous in {¢; |¢| < T} which together with (7.5) completes
the proof of this step. (ii) We shall show that if both 6, and 6, are
continuous amplitudes in {f; [¢|< T}, then 6,=8,. Since 6,(t)=8,(t)
(mod 27) for all ¢, §,—6, can take only values 0, =2, +=4m,.... On
the other hand, 6,—@, is continuous. Therefore, ,—6, must be a
constant. Hence for all ¢ 6,(t)—0,(¢)=6,(0)—6,(0)=0, i.e., 6,=6, (iii)
Denote by 6, the continuous amplitude in {¢; |¢| <T} defined in (i).
Then from (ii) we have
0,=0; for |t|<min(T, T").
Define 4 as follows
0t)=04(t) for n—1<|t|<n, n=12,....

Then 6 becomes a continuous amplitude of . Thus the lemma is
completely proved.

Let ¢ be a non-vanishing characteristic function and let 6 be its
continuous amplitude. Then

p(t)=exp {log | p(t) | +i6(¢)}, teR,.

log {@|+18 is called continuous logarithm of the @ and is denoted by
logp: :
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(7.9) log p=log |p | +16.

By definition y=log @ s characterized by the following conditions: y(t)
s a continuous function of t, vanishes at the origin t=0, and p({)=
exp {Y(f)}. The continuous logarithm of a non-vanishing characteristic
function ¢ is uniquely determined by . Furthermore, for each positive
integer n, the nth root of a non-vanishing characteristic function ¢ is
defined by

(7.10) p""=exp {(log @)/n},
where log @ is the continuons logarithm of . If a non-vanishing
characteristic function o, is equal to the nth power of another charac-
teristic function ¢,, i.e., if
(7.11) P =%
then @,=¢,"?, for (7.11) is rewritten as e'*t*1=¢""¢%;, which implies
log ¢;=nlog ¢, by the uniqueness of the continuous logarithm, hence,
@, =¢E2=glerr/r=g " Tn the sequel the continuous logarithm of a
non-vanishing characteristic function ¢ is called simply the logarithm
of o.

We shall need in the sequel the following

LEMMA 7.2 If a sequence of mon-vanishing characteristic functions
{pn(t)} converges to a non-vanishing characteristic function @ t) at every
point te R,, then {log @, (t)} converges to log @,(t) uniformly in every
bounded t set.

PrROOF: Let T be a fixed positive number. By the well-known
theorem we have

(7.12) lim ¢, (t)=@y(t) uniformly in || <T,
from which it follows that

(7.13) lim | @) |=1@o(f)| uniformly in [¢]< T,
hence,

lim min | ,(t) |=min | ().
n <7 ri<r

Since 'I‘Ill;I}' | @a(t)| >0 for all n, there exists an >0 such that

(7.14) f}llsi1;|¢”(t)l>q; for all »=0,1,2,....
From (7.18) and (7.14) it follows that
(7.15) lim log | @a(t) |=log | po(f)| uniformly in |¢|<T.

Now, since {@.(t)} is equicontinuous in {¢; [¢|<T}, to the 5 corresponds
a & such that
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(7.16) | o) —put’) |<y for [t—t'|<8, 7n=0,1,2,....
From (7.14) and (7.16) it follows that
(7.17) |l eat)lpa(t)—11<1 for [t—t'|<8, n=0,1,2,....

Therefore for any fixed ¢ the function Amp (@a(t)/@a(t)), of ¢, is continu-
ous in |t—¢'| <& and vanishes at ¢=¢ for n=0,1,2,.... It is just so
with the function 6,(f)—6,(t) of £, where 6, is the continuous amplitude
of ¢, for each n. But

On(t)—0u(t") =amp pu(t)—amp @u(t")=Amp (@.(t)/@a(t) (mod 2).
Therefore it must hold that
(7.18) 6.,(&)—6.,(t")=Amp (p,(t)/pa(t")) for [t—t'|<8, n=0,1,2,....
From (7.12) and (7.14) it follows that

1im {@.8)/Pa(t)} =po(t)/p(t’) uniformly in [¢|<T, |¢/|<T.
And if [t—#'| <38, the value @,(t)/pa(t’) lies by (7.14) and (7.17) in the
domain {z;|2z—1|<1, |z|=9}. From these two facts it follows that
for any fixed ¢’
(7.19) lim Amp {@a(?)/Pa(t')} =Amp {py(t)/@y(t')} uniformly in |t—¢'| < 8.
From (7.18) and (7.19) we have, for any fixed ¢,
(7.20) lim (04(¢) —0,(t")) =6,(t)—6,(t") uniformly in |t—¢'| <8.
Let the open sphere S(¢, §/2) with centre ¢ and radius §/2 correspond to
each point ¢ in |¢{]<T. According to the Heine-Borel theorem, the
compact set, |{|<T, is covered by the sum of finite number, say m,
of such spheres. Denote the finite set of centres of those spheres by

M. Let us assume that M contains the origin. Then from (7.20) for
each ¢>0 there exists an N=N(¢) such that

(7.21) 1 (0(8)—0a(t) — (66(8) — B} | < /m
for n=N, |t—¥t'| <, ' e M. From this fact we can prove that
(7.22) 10.8)—0u(E) I<e for n>N=N(), |t|<T.

Fix a t, |t|<T. The segment joining the origin 0 and the. point ¢ is
covered by the sum of open spheres with radius §/2 and with centres
0=t0, tl’ tg, ceey tk, SuCh that .

tjGM, j=0’1:2)-~~’k’

S50, 8/2)~ 8¢5, 8/2) 0,  J=L,2,...,k,
t € S(ts, 5/2).

Then, since



ON SOME LIMIT THEOREMS OF PROBABILITY DISTRIBUTIONS 67

[t—t, . 1< 8, i=1,2, ...,k
[t—t]1 < 8,
we have, from (7.21), for n=N
;=] (0n(t;) — On(t;-1)) — Bo(£;) — Os(E;-1)) | < €/m, j=1,2,..., k.
4 =](0n(t) —Oa(ts)) — (Bo(8) — 8o(2e)) | < /.
As 0,(t;)=04t,)=0, from (7.23) we have

k
600 | < 33 4+ 4 < ";l e<

(7.23)

<e for n>=N.

Since N does not depend on £, (7.22) holds, hence
(7.24) lim 6,(£)=6,(t) uniformly in [|¢|<T.

(7.15) and (7.24) complete the proof, as log @.(t)=log | p.(f)|+26.(t) for
n=0,1,2,...

8. Infinitely divisible distributions

A distribution is called infinitely divisible if, for each positive
integer 7, its characteristic function ¢ is the nth power of a charac-
teristic function v, p=1".

LEMMA 8.1 The characteristic function of a infinitely divisible
distribution cannot take the value 0.

PROOF: Let @ be the characteristic function. Then to each n corres-
ponds a characteristic function ¢, such that ¢=¢j, from which it
follows that |, |*=|¢@|¥*. Hence

limlguo={ & 0T

0, if o) =0.

Put Y=lim |p,|®.. As |g,|® is a characteristic function and V(¢)=1 in a
neighborhood of the origin, by the continuity theorem + is a charac-
teristic function. Thus + is continuous hence Y (t)=1, @(t) 30 for
every ¢t.

In this case p,=¢p""=¢"2%/" from which it follows that lim ¢.(f)=1
at every t. Hence, the distribution function with the characteristic
function @, tends to the unit distribution function U.

In the remainder of this part the following notations will be used:
a with or without a subscript denotes a vector in R,; ¢ with or with-
out a subscript denotes a non-negative definite matrix of pth order,
the (J, k)th elements, i.e., elements in the jth row and kth column, of
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o and o, are denoted by o; and 437, respectively, so that s=(s;) and
aa=(07); and p with or without a subscript denotes a p-dimensional
measure with u(R,)< o and u({0})=0.

LEMMA 8.2 The function ¢ defined by
— il — irr__q_ 1+2" z 4
@8.1) W(t) =ia't ——t’at+ f (e o w,x) e

i3 the logarithm of the characterzstw Sunction of a infinitely divisible
distribution.

PROOF: First we shall show that ¢*® is a characteristic function. It
is easily seen that the integrand in the right side of (8.1)

ity \1+2'x
it'z__l_
(e 1+x’z) 2’z
is bounded and continuous with respect to (z,?¢) in the domain |z]| >0,
|¢] < T for each positive number T. Let us take an ¢ such that 0<e<1
and let us consider the integral
s/,
<zl <1/e 1+dx vz

Divide the integration domain into disjoint subintervals J, (k=1, 2,..., n),
choose a point %, from each J;, and make an approximation sum

S=" ( 52k ] — G220 ) 1+2lT0 EA
1+20%a, /)  ThZa

Then we have
S=SIh(e“®—1)+ b,
where
= M,‘(J)> 0,

! Y. 205

b=S"—F® 4. 7,).
2 T ()

It is easily verified that A,(¢*“®»—1) is the logarithm of the characteristic
function of a p-dimensional random varisble z.y, where y is a real
random variable whose distribution is Poissonian with mean 4,, hence,
¢® is also a p-dimensional characteristic function. Letting max (diameter
of J,) tend to 0, S converges to a continuous function I,(f). Therefore,
by the continuity theorem, eI*” is a characteristic function. By the
same theorem, as
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. , 'z 1+a:’w
1,@®)=lim L(t)= e¢ri—1—_" du
% "f ,.>o( Trws) s

(i) e

¢« ig a characteristic function. On the other hand &“*~*~'¥** ig a normal
characteristic function. Therefore ¢*® is a characteristic function. Then,
for each positive integer », since Y(¢)/n is written in the form (8.1)
with @, o, p replaced by a/n, o/n, u/n, €*®" is also a characteristic
function, hence ¢*® is the characteristic function of a infinitely divisible
distribution. Furthermore, ¥(t) is the logarithm of ¢*®, as it is continu-
ous and vanishes at £=0.
LEMMA 8.3 In (8.1) a, o, and p are uniquely determined by .

PROOF: Form
®2  eO=vO-5 [ veds

la=2ll <1
1 e sinz;\ 1+2'z
= ?dh"'f ( H z; ) o d/"
where it is supposed that (sm §)/é=1 for £=0.

Write
8.3) uB= f( none) 1482 4, 4 L Sox®),  EeB,

z;

where

1, if 0¢kF,
E — ? H
x(E) [o, if 0¢E.
Then v is a p-dimensional measure with »(R,)< e and it holds that
(8.4) )= [ 6 dv.
J;
Write
) Hsmx, 1+2'x _1
8.5) o@=(1-11 > )itz T for w0, g(0)=

Note that g is continuous everywhere and there exist two constants ¢,
and ¢, such that

(8.6) 0<e <glx)<c, for all z€eR,,
since
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lim g(x)=1,
and o
(8.7) ILI? 9(x)=1/6.
(See the end of this section). From (8.4) v is uniquely determined by
®, hence, by {. Write
w(B)=(B—{01) =uB)~ = S osx(E),

which is uniquely determined by ». Then (8.8) becomes

(B = j‘( H sinzx; ) lzfxdp, EcB,

from which we see that u is represented by

_ sm.'c5\1+:vw -1
w(B)= f [(1 e ) ] dv, EcB,
and p is uniquely determmed by v,. After all u is uniquely determined
by 4. Hence it is just so with

. 1 , e \14+2'z
ta't— L ot =y(t)— ( e
2 A= ®) f ¢ 1+w’m) 'z

Ry

By taking its real and imaginary parts it is seen that a and ¢ are
uniquely determined by +.
LEMMA 8.4 If the function
. 1 it \1+2'z
8.8 wt)=ialt— > tot+ [ (ev—1- ) dptn
8.8) «k()mza[ e )1res g,
»
converges to a function U(t), continuous at the origin, at every point t < R,
then there exist a, o, and u such that

lim a,=a, lim (o, +70)=0+T,

lim po(E)=u(E)
Sor every continuity set E of u whose closure E does not contain the
origin, and I coincides with  determined by

. 1 ’ e ; 1+$’x
.10 t)y=ta't——¢ et —1— ,
(8.10) vit)=ia 2 aH_[( 1+a:’a:> dr "

$ 4
where r,=(=%) and r=(r;) are matrices with the elements
@®.11) = f 227 P f Til g,

8.9)




ON SOME LIMIT THEOREMS OF PROBABILITY DISTRIBUTIONS 71

Conversely if (8.9) holds, then -, converges to .

PROOF: Assume the hypotheses of the direct part. Then ¢<® =lim
¢**" is, by the continuity theorem, a characteristic function. Let I,(f)
be the logarithm of the characteristic function ¢<°, defined by (7.9).
Then by Lemma 7.2 .,(t) converges to /,({) uniformly in every bounded
t set. Hence we have /,=! and

(8.12) lim ¥, (£)=1(¢)
uniformly in every bounded ¢ set. Let us form
(8.13) P)=tut)= 5 [ Vue)ds, teR,
la=2)<1
Then we have
(8.14) Pat)= [ € dvy,
/
with
(8.15)  wo(E)= f (1~ ns’:f:) 1:,””' L2 z oPx(E), Ec¢B,
Let us write
' 1

(8.16) P)=Ut)— 2 f U(s) ds.

lls=2[l<1
From (8.12), (8.13), and (8.16) it follows that
(8.17) lim @,(t)=w(t), for all teR,.

As @ is continuous, by the continuity theorem there exists a p-dimen-
sional measure v such that

(8.18) lim v,=v.
Now put .‘
- 1w sinz;\ 1+x'r
8.19) Pu(B)=un(E) ;a o (B)= f (1 e ) 22 Ay E B,

then from (8.18) and (8.19) it follows that

(8.20) lim v (E)=u(E)

for every continuity set £ of v which does not contain the origin. Owing
to (8.19) u, is represented by

(8.21) ()= { {(1 Igjs‘:j”v)l';,:"”} &., EcB,.

Hence by (8.20) we have
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(8.22) lim po(E)= py(E),
for every continuity set E, not containing 0, of », where
ginz;\1+2'z) ™"

wol(B)= f (1--m 5 02 ) I+T2 " dy, EeB,
Since any continuity set of u, is a continuity set of v, (8.22) holds for
every continuity set E, not containing 0, of x,. Let us put

pE)=p(E—1{0}), EeB,

Then we have
(8.23) lim p(E)=w(E) »
for every continuity set E of u, whose closure E does not contain the
origin. We can show that {u.(R,); n=1,2,...} is bounded. From (8.6),
(8.21), and (8.19) we have

I-‘n(Rp)< cx-l Du(Rp)< ¢! Vn(Rp):
and (8.18) implies that
lim v (R,)=u(R,).
Hence {u.(R,)} is bounded. Now v, can be written as

(8.24) \lr,.(t)=ia,’.t—-%~t’(a,.+-r,.)t+ { h(z, £) dpn,

where

Wz, £)=( e —1— it'x (t'z)* 1+a:'x’
@ 0=(e 1+a:’a:+2(1+x:v)) oz 0 °F0

h(0, £)=0.
It is easily seen that for each ¢, € R,,
lim Az, t)=0,

z>0,¢> 2
and A(z, t) is bounded and continuous in z € R,, {t|<T for each T>0.
Hence, by Lemma 8.5 (below) we have

(8.25) lim f h(z, ) dpn= f h(z, t) dp.

From (8.24), (8.25) and (8. 12) it is seen that the limit
— !
lim {mt ; t(a',.+'r,.)t}
exists and hence also the limits

lima,=a (say),

(8.26) lim (ontra)=c* (58)
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exist. After all we have
=2t — 1, *
| Uy=i't—-to t+£h(z, £) dp

which ean be written as

. 1 , it'r \1+o'z
. (t)=ia't——tqat 11— 25 du,
®20)  UO=idt— g to +‘£(e Az )itrng,
where ’
(8.28) o=o*—r1,

= being defined by (8.11). Next we must show that o is non-negative
definite. Now, ¥n(f) can be written, for each ¢>0, as

Valt)=idlt + f (e“" —1-- :” if,x) 1 :,: % Bt
lz|>e

+ [ hztd ..——{t’a,,t+ #2)" dpn
'{r‘lse ( g {IS! o'
Assume that the set {x; || > ¢} is a continuity set of pu. Since each
term, except the last in the right side, converges as n tends to o (cf.
Lemma 8.5), so is also the case with the latter and we have

l(t)=ia't+£l>!(e“"—1—- 1%’;) 1 ::’9’ d
_1 (Fz)
+ .f[ Qh(x, £) dp—-- lim {t'a,.t+ .f. R dp }

Let ¢ tend to 0. Then the third term in the right side converges to 0
and we have

. , it'x 1+a:’:c
(t)=ia't + 1" d
»£>o( 1+:va:> x'z
I TR o (Hx)?
o lm lim (ot [ L g,

|zl <e

Comparing this with (8.27) we have

tot=lim lim {to.¢ + [ e g
g0 nroco
lrj<e

from which it is seen that o is non-negative definite. This completes
the proof of the direct part.
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To prove the converse part, let us rewrite (8.8) and (8.10) as

V() =@t — L (o +Ta)t + f Rz, ) dpin,
2 s
xb(t)=ia’t——;—t’(a+r)t+ l I, t) du.

We can show the boundedness of the sequence {u.(R,); n=1,2,...},
which together with (8.9) and Lemma 8.5 implies that limy,=vy and
completes the proof. Now notice that

(8.29) in(Bp)= f 5 dyy =375

From the hypothesis (8.9) we have
lim 33 (afP+ 7)) = g (055 7is),
hence, there exists a con;tant K, independent of n, such that
(8.30) S‘ (6F++H)< K, n=1,2,....
Since 57 = 0 (8.29) and (8.80) imply that
pn(Rp) < K, n=1,2,....
LEMMA 8.5 Assume that
pa({0})=0, Hn(Bp) =K (0=0,1,2,...)
lim pn(E) = po(E)

for every continuity set E of p, whose closure E does mot contain the
origin. If h(x) is bounded and continuous in the whole space, and if

(8.81) lm(} h(z)=0
then
(8.82) lim [ 2@)dp.= [ k(@)dpo .
| Bt
Moreover, if {(x; |x| < ¢} 18 a continuity set of p,,
(8.33) lim f () dpn= f (@) dpo .
1] <e |z]<e .

PROOF: For any 8>0 we have

| f h(2) dptn— f h(&) dp
<| f k() djin— f o+
| 2[>

+| f ) dpn +

, [ r@ du .

lz1<8
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If the set {x;|x| > 8} is a continuity set of u, the first term in the
right side tends to zero, hence,

f 1) dpn— f 7(®) dpo

This together with (8. 31) implies (8 32) ag 8§ may be chosen arbitrarily
small. (8.33) follows from (8.82) and the fact that

lim h(x) dp,= h(x) dy,.
.{:I>! £>s
THEOREM 8.1 Let d(t) be the characteristic function of any infinitely
divisible distribution. Then d(t) cannot take the value 0, hence, has the
continuous logarithm log d(t), and it is uniquely represented in the form
(8.1). Conversely, any function ¥(t) defined by (8.1) is the logarithm of
the characteristic function of some infinitely divisible distribution.
ProoOF: Let d(¢) be the characteristic function of an infinitely divi-
sible distribution. It is shown in Lemma 8.1, that d(tf) cannot take the
value 0. Hence the continuous logarithm, log d(t), exists. Then we
have

hm sup <2K sup | h(a;)l

log d(t)=1lim 7 (¢! *¥»—1),
RS -1
Since e!'#¥*¥"=d'~(t) ig a characteristic function, it is written as
e{log d(t)}/n._.___ f eit’ x d P"’
R,

where P, is a p-dimensional distribution. Hence we have

n(e{logd(t)}/n__l)=nf (eix';_ 1) d Pn
R

B jn;lif:'idp"*”f (ew‘_l_l:t-'x'x)dp

iz f(ew_l-l_:m)lgw
Ep

dpin,

where

z : o'c
n= de o(E)= dPn, E e B,.
¢ [1+x’x mlE)=n) 5 o £

D
Consequently we have

st fite [ {415 ) 122,
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with
pn(Bp)<eo,  pa({0})=0.

According to Lemma 8.4, log d(¢) can be represented in the form (8.1).
The uniqueness of the representation is proved in Lemma 8.3. The
converse is shown in Lemma 8.2.

THEOREM 8.2 If a sequence of infinitely divisible distributions con-
verges to some distribution, the limit distribution is also infinitely divisible.

PROOF: Let {®.} be the corresponding sequence of the characteristic
functions and let o, be the characteristic function of the limiting
distribution. Then lim @,.(t)=¢@,() for all ¢, hence, for each positive
integer %k, lim | @ (f) [*=| @, (t) |** for all £. Since @, is infinitely divi-
sible, | @, |** is also a characteristic function. And |¢,|”* is continuous.
Hence, by the continuity theorem, |@,|”* must be a characteristic
function. As this holds for every k=1, 2,..., @, cannot take the value
0 (see the proof of Lemma 8.1). According to Lemma 7.2

lim log @.(f) =1log @,(t), te R,

from which we see that, for any positive integer k, ¢,"*(t)=e¢lsen 1%
converges to ¢,/ (f)=e!*®*“* By the continuity theorem @,"*(t) is also
a characteristic function. As this holds for every k=1, 2,..., @, must
be infinitely divisible.

THEOREM 8.3 Let L,, n=0,1, 2,..., be infinitely divisible distributions
defined by

— ! __1_ ’ itle 1 __ it’x 1+$’x
Yra(t) =12alt 3 tout+ [ (e 1 ) dpn.
14

142’2/ o'z
Then L, converges to L, if and only if the following three conditions hold :
Iim Ay =0y, lim (ﬂn+7n)=0'o+"fo:
lim pn(E) = po(E) -
for every continuity set E of p, whose closure E does not contain the
origin, where , and +, are defined by (8.11).
This follows from Lemmas 7.2, 8.3, and 8.4.
Now we shall verify (8.7) by induction. When p=1, it is easily

verified. Assume that (8.7) holds for some p. Then for any given e
such that 0<e<1/6, there exists a §>0 such that

P
. 1+ 3
_I”Ismx,-) T <%+e, if 0<éx§<8»
1

®.38) L s<(1 p
6 Sal

Je=t zj
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. 2
(8.35) %—€<(1_ slnzp+l> 1+xy+‘ < %_{_e’ if O< x;+‘ < 8.

2
Lp+1 To41

Now assume that
P41

Stal< s, i;‘,z}:ko, 2y 30,

J=1

and write
8= ﬁ:x}-
1
Then both (8.34) and (8.85) hold and can be rewritten as
1 Sy > ging; 1 8
. —(= II J<l—(=— r_,
(8.36) 1 (6+e)1+s,<1 i< (6 e)1+sp
1 z; sing . 1 z,
. 1—-(= P+l Pl o] —(— e )2t
(8.37) <6 + e) Tz < - < (6 s>1+x;+l
Form (8.36) x(8.37), then

1_(l+€)( S 4 Tyt )<’I+I‘sina:,-
6 1+sp 1+27;+1

1 ZJ-
1 s 1 2 g Toe
O N o
6 /\1+s, 1+ (6 ) 1+s, 14+2n

On the other hand we have

_jp+x:+l <_ 8 + Tpi1 <(149) 8p+ T ,
1+s,+2p 148, 1425 1+38,+25,,
S . T 8 8T
1+s, 142,y 2 14s,+%;.
Hence we have

(Lt o)yt LTIEE g (L) (18] e

6 .6 2

148541 1 x;

+1
where s,,+,=s,+:c§+1=7’2x}. Assume that & is so small that

(%+e)(1+s)<%+2s, (g-9)-(3-<) 2>5—2

Then we have
P+l

1 ) Spi1 sinz; 1 ) Sps1
1—-{—=—+2 L < II <1l—{——2¢) T2+
(§+2e) oo, <15 (%)

from which it follows that

Kk

’
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. . 1+
(8.38) %_2€<<1_”ffs1nx,-) P

RIS

Thus, for any given e 0<e<1/6, there exists a §>0 such that (8.38)
p+1

holds if >#xj<8. Therefore (8.7) holds with p replaced by p+1.

9. Infinitely divisible distributions in the generalized sense

A distribution is called infinitely divisible in the generalized sense
(following J. L. Doob [4], p. 129) if, for each 5 >0, its distribution
function F can be written as a convolution of distribution functions
Fqu,---, Fn’

9.1) F=F «F,%---xF,

with

9.2) f dF )<, J7=1,2,..., n.
lz[=n

If F is an infinitely divisible distribution function, for each n, F

can be written as a eonvolution .
F=G,%xG,*+-++G, (n times)

with G, tending to the unit distribution function U. Thus any infinitely
divisible distribution is infinitely divisible in the generalized sense. In
this section it is shown that the converse is also true. We shall begin
with the following lemmas.

LEMMA 9.1 Let {Fy;1=1,2,...,1; n=1,2,...} be a sequence of
one-dimensional distribution functions. Write

Apy= zd F,',,(x).
‘{l <1

If, for each ¢>0,
lim maxf d F,y(x)=0,

n 13

jel=e
then we have
lim max f (@ —t)? d Fog(@)=0.
" Y«
Moreover, if the convolution Fo, « Fpo* -+« « F,, converges to a distribution
Sunction and if ¢, is a positive comstant, then there exists a comstant c,
tndependent of m, such that
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zf dF,(x)<e¢, n=L12,...,
z
[z| =gy
S G-aydF@=<e n=12,..
, 1<t :

¢ depends on the given sequences {F,} and . (see M. Loéve [17],
section 1I, 4, and section IV, 2*.)

LEMMA 9.2 Let {Fy; l=12,..., l,,, n=1,2,...} be a sequence of
p-dimensional distribution functions. Assume that for each ¢>0
9.3) lim max f & Fo()=0

n 1 2)=e

and that the convolution F, x Fu,%---xF,,  converges to a distribution
Sunction. Let @, be the characteristic function of F,, and put

am =f T d F,.;(x),

llz)l<1
Tnl8)=Pu(t) €7 —1.
Then we have :
9.4 ligln 12 | ¥se2) [*=0.

PROOF: Let us denote the one-dimensional marginal distribution
funetions of F,; by F,.; (=1,2,..., p), and let us put

bm.i = f zd F nlj_(x) ’
12]<1
bm:(bmn bnigs + « s buw)
anz:(a'nm aﬂlZ: s ey a‘nzp) .
Then we have
[ g5 — s |=‘f xdem(x)_f xdenz(x)I

l=51<t 2 <1
=’ f ;4 Fuf@)| < f dF. (@),
|’j|<hllzf|2! lzjj=>1
and therefore
9.5) b= =3 b=t < p [ dFofa).

=) =1

* Japanese readers may also refer to Y. Kawada [12], Appendix II, lemma 6 and III,
lemma 8.
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Now we have

l7a®)1=| f (@0 —1) d Froto)

<2[ dFu@+|[ #e-a)dFu@ + L [ (te-m)rdF.@
2
flzli=t Nzl<1 ) lzl<t .
=2L+L+1, (say),
where we used the well-known formula

et —1—18] < &2, —co<f< oo,
But
L=|ta—ta,, f d Foy(@) |=| f dFo(@) ]
flzli<1 ffzil=1
<Itl-lanll < p”2|t| I,
L< VL [ o—anpdFuw)
el <1
smz( f | &by [2 A Fo(@) + | by —tyy |=)
lzli<1
<1t ([ 1z-buldFu@+oL,),
Nzl <t
by (9.5). Hence, we have
©6)  17m® <@+ 1e1+pltDL+IEE [ 12—byd Ful@).

Nzjj<1
Now, by the inequality

dF,,,(x)sf d Fo@)

iz =1 Je=1
and the hypothesis (9.3) we have
9.7 lim max I,=1lim max f dF,.,(x)=k0.
n 11 n i

2=

According to Lemma 9.1

lim max f (@b d Fuf@)=0, j=1,2,..., p.
jzi<t

From this and the inequality
|2=bu FAFu@ <3 [ @—bu d Fus@)

i<l lrj<1
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we have
(9.8) lim max f | & —by 2 d Fry(x)=0.
n l
Nzl <1
From (9.6), (9.7), and (9.8) it follows that
9.9) lim max | ¥m(t) | =0.

On the other hand, for each j(=1, 2...), the sequence {F,;; I=1,2,...,
l., n=1,2,...} of one-dimensional distribution functions satisfies the
hypotheses of Lemma 9.1 and therefore has a constant ¢;, the existence

of which is mentioned in Lemma 9.1 with ¢,=1. Put ¢c=maxc;. Then
1<j<p

S iP@<53S [ Fu@=33[ a0 <,

llzii=1 lz[=1 ) lz]=1

S/ 1z-buldFu@ <5 [ @b d Fusa) < pe.

=l <1 lz]<1

These together with (9.6) imply that
(9.10) 2@ < 2+0Y1E]+(+1) £} pe=K() (say).

Henece,
O11) S 7l®) P < max | va(®) -3 val®)] < K@) max | vuld) .

(9.9) and (9.11) imply (9.4) q.e.d.
LEMMA 9.3. Assume the hypotheses in Lemma 9.2. Let V be a
neighborhood of the origin, and put

= [0 d F(a),
v

Fu(E) = Prs(t) €7t 1.,
Then it holds that

(9.12) lim 2 | ¥nelt) I2=0.

By a neighborhood of the origin we mean a bounded Borel set which
contains a sphere with the origin as its centre.
PROOF: As V is a neighborhood of the origin there exist two posi-
tive numbers ¢, and ¢, such that
S(O’ 51) cvc S(O, 52))
where S(0, ¢) denotes the open sphere with centre 0 and radius e.
{x;|lz] <e}. We may assume that ¢, <1. Write
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&’u=(aum amz» ceey &mp)-
Then for each j=1,2, ..., p, we have
|tuns— s =| [ 24 Futa)— [ 20 Fota)
v

=i <1

9.13) <[ 1mldFu@+ [ 151dFu@

Nl <1, ve Vi llzllz1

<1+e) [ aF.@),
Izl=e

where V° denotes the complement of V. This together with (9.3)
implies that

(9.14) lim max | @ns—0ng;1=0, 7=1,2, ..., p.
By Lemma 9.1 there exists a constant ¢ such that

‘2 f dF,(x)<c, for all n.

z]=> ¢
Hence from (9.18) it follows that
(9.15) lea,.,j—&,.ul <(1+s)e, for all » and j.

From (9.14) and (9.15) it follows that
limzlla,.,,-—-&,,,,-|2=0, j=1) 2) R

Add these from j=1 to j=p. Then
(9-16) ]im 2 l a'u—a”z l2=0.
On the other hand
| Yne(8) = Fmi() | =] Pra() (6757 — 74 ) |
=| et~ 1 | < | ¥ (Any— ) | < [ E]*] Gy — Gz |-
This together with (9.16) implies that
liin ‘2 I'Ynl(t)—qnl(t) l2=0,

and this together with (9.4) implies (9.12). Thus the lemma is proved.

THEOREM 9.1 Let {Fy; l=1,2,...,1,, n=1,2,...} be a sequence
of distribution functions. If F,, converge to the unit distribution function
U uniformly in l as n tends to o, and the convolution Fyx Fpo* -« xFp
converges to a distribution function F, then F must be infinitely divisible.

The proof runs in the same way as in the one-dimensional case,
but we shall give a proof, for the completeness following M. Loéve [17].
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PROOF: Let . be the characteristic function of F,, let V be a
neighborhood of the origin, and put '

Qo= f zd Foy(2),
v

Vi) =Pmlt) €45 — 1,
log @) =1a% t + Ym(?).
Since log @)(¢) is written as

vlog pXt)=tal,t+ f (e“*~1)d _F,.,(x+a,.,),
2y
@X(t) is the characteristic function of an infinitely divisible distribution
(see the proof of Lemma 8.2). Now from (9.17) it follows that
| Pualt) —PX(E) | =1 € (1 + yuel) — ™) |
< (1/2) TPl | opy(£) [P < 5 | ymil?) I%,

9.17)

as Jym(t) ]| <2. Hence .
(9.18) | P(®) =P | < 5] ywmlt) I°.
Put
PXt)=To4t)  PuD=TIPuld).
Since the convolution of any finite sequénce of infinitely divisible distri-

butions is also infinitely divisible, ¥ must be the characteristic function
of an infinitely divisible distribution. On the other hand

9.19) | Pa(t) =22 () | < 33| Puil®) — (D) |,
by using the fact, easily proved by induction, that |a;| <1 and |b| <1,
1=1,2,..., 1, imply |la,—11b,| < 3| a;—b;|. From (9.18) and (9.19) it
. follows that
| Pa(®) — P2 (€)1 < 623 Ymil®) I*.

According to Lemma 9.3

lim 3w (®) =0
Therefore
(9.20) lim | pu(t)— o (&) 1=0.

Denote by @(t) the characteristic function of F. Then from the hypo-
thesis it holds that

(9.21)  lim pu(t)=o(t).
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(9.20) and (9.21) imply that
lim p(¢)=o(?).
Therefore, according to Theorem 8.2, F' must be infinitely divisible.
COROLLARY  An infinitely divisible distribution in the generalized
sense is infinitely divisible.

10. Convergence theorem

THEOREM 10.1 Assume that F,, 1=1,2,..., 1, converge to U uni-
Jormly in 1 <1<, as n>co. Then the convolution F, +F.*«-- *F,,.
converges to the infinitely divisible distribution function defined by

. 1 e \1+2'z
0. —aqt— e __ 1 __
(10.1) W) =ia't 2tat+£(e 1 __Hm) 2 d,
if and only if the following three conditons hold :
. T _
(10.2) lim 33 (@u+ ,,f APt an))=a,

10.3) lim T G F@+am)=cn+ | 2% du, j,k=1,2,...,
()n;fplmﬂ it ‘)"”’[pm"’ P

(10.4) lim 33 f 1””’ T g B+ an)=u(E),

Sfor every continuity set E, with closure not containing the origin, of pu,
where

g = f z dF,(@),

and V 18 an arbitrarily fixed meighborhood of the origin.
PrROOF: The notations adopted in the proof of Theorem 9.1 are used.
By (9.20)
lim @, (t)=¢*®
if and only if
lim @} (t)=e*®,

Now we have

log 92 ()= {ialt + [ (¢~ 1) d Fufw+ o)

= [datit+ jg; lij':,wdF,,,(x+a,,,)+ fgp(em—l—l_’::m)dF,.,(o:+a,.,)}
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hence, .

. , ity \1+2'z
(10.5 log @*(8) =ialt (w_l__@_# 1oz,
(10.5) og PX(2) m+4e Hm) t22 4
‘where

A= 21 {a,,,+4;1+iw,;dﬁ',.,(x+am)},

N i :
im(E)= £ rodFu@tay), EeB,
From Theorem 8.3 @j(f) converges to ¢*® if and only if (10.2)-(10.4)
simultaneously hold. Thus, the proof is completed.

In the above proof, let {b,}] be any sequence of vectors. Then we
have

[ n(t) €7 — Pk () 67" | =| pu(t) — pX(E) |,
and

., |
log (@*(£) 6=™'* ) =i(an—b,Y't + f (e“"‘—-l -5 ‘: ;Jl%'wdm.
Ry

‘Therefore we have the following

" COROLLARY Assume that F.,, 1=1,2,.. ., l,, converge to U uniformly
m 1<1=<1, as n—>oo, and let {b,} be a sequence of vectors. Then the
convolution Fpi%Fpyx-«cxF, xU(-+b,) converges to the distribution
Sunction defined by (10.1) if and only if

(10.6) lim { g(a,., + f 1—&"; d Fm(x+a,,,))—b,,}~=a,
Ry .

(10.3) and (10.4) hold simultaneously.

Let us notice that, in Theorem 10.1, if the limiting distribution is
non-unit the sequence {l,} must be tend to . To prove this, assume
that {l/,] has a bounded subsequence {l.:}, lnn<L, 5=1,2,..., and put

Gu=Fp xFpyx <+« x Fy, .
‘Then, for each ¢>0, it holds that
b3
f dGupn(®)< 3] f d Fy;u(2) < L max f d F,; (2)—>0.
I=1 z

je{=e lzl2¢e/L [zj>2/L
‘Hence

lj.m Gn(' H= U,
Jro

-this contradicts the hypothesis.
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Part III Central limit theorem

11. General case

The normal distribution with mean vector m and covariance matrix
o=(c;) (matrix of the second order central moments o), i.e., the
distribution with characteristic function exp (¢m't—3#st) is denoted by
N(m, ). Unit distributions, though often denoted by N(m, 0), are not
called normal in this paper. The most general version of the p-dimen-
sional central limit theorem is given by the following theorem, from
which various versions of the central limit theorem can be deduced.
In Theorem 11.1 the same notations as in the preceding three sections
are used.

THEOREM 11.1 Assume that
(11.1) lim max f dFo(x)=0,  for each ¢>0.

" leze
Then the distribution defined by the comvolution

FoyxFoyx <+« % Fop % U(- +by)

converges to a normal distribution N(0, o), if and only if the following
three conditions hold :

(11.2) lim S} f dFu(@)=0,  for each >0,
lzl>¢
(11.8) 1@(\‘2 [ xanz(x)—b,‘>=Q,
(11.4) lim >3 [ zaed Fry(@)— | 2;d Fry(@) | 2. d Fry(x) ) =03,
3 ( femd ) a0 Fute) [ ) =

V'
7, k’_‘l: 2’---, D,

where V is an arbitrarily fived neighborhood of the origin.

Let X,;. Xo, ..., Xu, be independent random variables with distri-
bution functions Fl,,, Fy,,..., Fu, for each n=1,2,.... Then (11.1)
means that X, [=1,2,..., l,, converge to 0 in probability uniformly
in 1<1</, as n>c, i.e., that each term is asymptotically individually
negligible. Under (11.1), (11.2) is equivalent to the condition that
m?xlX,,,I converges to 0 in probability as n—co, i.e., that the greatest

term is asymptotically negligible (P. Lévy [16], §384). Let us put
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"I((") ) if an(m) eV,
if X (0)¢V.

‘Then (11.2) implies that the difference between the distribution functions
of Xp+ -+ +Xu,—b, and X+ .-+ X}, —b, is asymptotically negligible
(see section 13), (11.8) means that the mean vector of X/, +---+X,,,—bn
converges to the mean vector of the limit distribution, and (11.4)
represents that the covariance matrix of X/, +---+ X/, —b, converges
to the covariance matrix of the limit distribution.

Let V, and V, be two neighborhoods of the origin. Then under (11.2),
(11.8) and (11.4) with V=7V, are equivalent to (11.3) and (11.4) with
V=V, respectively (see Lemma 15.1).

PROOF OF THEOREM 11.1 According to Corollary to Theorem 10.1 the
distribution defined by Fo * Foy* -« x Fy, » U(- +b,) converges to N(0, o)
if and only if the following three conditions hold : ‘

=17

. 'z _ s =
(11.5) lim 37 f Tt AT @+a)=0,  if E30,
(11.6) li’}n[ (a,,,+ f _—an,(era,,,)) ]:o,
arm lim 3} f —A%—dﬁ'nl(x+am)=% k=12, ..,p
where
(11.8) = | xd Fp(x),
/

Now (11.5) can be replaced by

lim 53 f _“’%,_d Fo(x+an,)=0, for each &>0,
jz]=e

hence, by
(11.5)) lim S f dFy(x+a,)=0, for each e>0.

jzl=e

And this implies that
lim 2 f dFm (x +am)=01
n 3 Ve

from which it follows that
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d Fo(x+a,)=0,

x.lml N —_
h’r‘ng 1+w, dFM(x'l'a'm) 0 J) k"‘]-, 2) -.o)p

Therefore, under (11.5"), (11.6) and (11.7) can, respectively, be replaced
by

(11.6") lim [;‘ (a,,,+ f ﬁﬁdﬁ"m(x+anz))—bﬂ}=0,

s
/

11.7) llmelxx* AFu(@+an)=0cn,  §,k=1,2,...,p

Thus, (11.5)-(11.7) are equivalent to (11.5")-(11.7"). Next we shall show
that under (11.5"), (11.7") is equivalent to the following condition :

1.7 lim>) @ d Frx+0n)=0n, J,k=1,...,p
n 4
v

To prove this, since

1+ﬂ RS PP

it is sufficient to show that each of (11.7) and (11. 7”), together with
(11.5"), implies .

(11.9) lim 33 f 2y 20 A Py @+ au)=0.

T 2’z
T, — * L

Notice that there ex1sts two positive numbers ¢, < e, such that
S(O’ el) c VC S(O) 52)°

Assume (11.5") and (11.7"). Then dividing f into f + f we have

vy lel<n V7, 1zl2n

lim sup‘Efx T, - dFm(fv+am)|

n > oo

< lim sup{}; Eflx,x anz(a?-}-dm)-{-ezZ.I/;[zndFm(x'i'a:m)]

=7 Z_;”jj’
from which (11.9) is deduced as » may be chosen arbitrarily small.
Thus (11.5") and (11.7") imply (11.9). This holds even if (11.7") is ex-
changed by (11.7”). Therefore under (11.5"), (11.7") is equivalent to
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(11.7"). It is similarly proved that under (11.5") and (11.7"), (11.6") is
equivalent to the following condition :

(11.6") lim [Z @+ [2d Fo(x+an)—a,] =0.

By now it has been shown that (11.5), (11.6), and (11.7) are equivalent
to (11.5%) (11.6”) and (11.7”). On the other hand, (11.8) is rewritten by
(11.8) as _
(11.8") © lim (“;‘ @y —bs)=0.
And under (11.2), (11.4) is equivalent to
11.4)  1lim 3 @) @—tu)d Fu@)=0n G k=1,2,.

\ 4

where A= (@nr1y Cnzgy . « oy Brgp)-

It is left to show that (11.5'), (11.6”), and (11.7”) are equivalent to (11.2),

(11.3) and (11.4). Now, from (11.1) and (11.8) it is easily proved that

(11.10) linm max | @ 1=0.

' By (11.10), (11.5') is equivalent to (11.2). This' follows from the fact

that for each >0 there exists an N=N(e) such that
mlaxla,.,ISe/Z, for =N,

and hence
iFu@ <[ dFu@<[ dFu@), for n=N,
|z]=>2e [z—anj2e |z]=2¢e/2 .
where the second side is equal to f dFy(z+a,). Under (11.5') or

=zl =2e
equivalently under (11.2), (11 6") is equivalent to (11.8"). To prove this
we shall deduce

(11.11) lim 3 f 2d Fyu(z+a,)=0
from (11.2): "
| f 5,0 Pl + 00| = | f (x,-—a..,»dF..,(w)]

<|[ @-aw)dFua)- f @) A(o)| + | [ 210 Ful)

Viay

<[ lm-auldFu@+ f |2ty | 4 Fu(e) +

(F+ap)~Ve VALY +a,)¢

s [ LF0)
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<e f d Fou(2) + 2e, f d Fo(@) +e, f d Fou (@)

|zl =gy |z|2ey/2 |zl =gy

<4 f dF. (), n>NE),

2| =>ey/2 .
where V+a={z; rz=y+a, yc V}, hence,

S [mdFueta)| < a5 [ dFu@), n2NE), i=12,...,p,
v x| 2e,/2

from which (11.11) follows by (11.2). Under (11.5") or equivalently
under (11.2), (11.7") is equivalent to (11.4’). To prove this we shall
deduce

(1112)  lim [2, f 205 d Ff@+ G,)— 3} f x,-x,,dF,,,(mm,.,)]—_-o

V—ay; v

from (11.2) and (11.5%):
|§,: [ emdFue+a)-3 [emd Fu@+an)

V=ay v
=3[  lzmldFu@re)+3 [ 1amld et an)
(V=andVe ! VAV —anC

<485 f AF (@ +a,)+eS) f d Fo(@) > 0,

] [
1228y Jz|=eg

hence, (11.12) holds. Thus the proof is completed.

In the sequel, unless the contrary is explicitly stated, the following
notations will be used : X,,, X,,. .., X, denote independent p-dimensional
random variables with distribution functions F,,, F,,..., F\, for each
n=1,2,...;

Se=Xn +Xn2+ e +X"ln H

a, denotes a positive number and b, denotes a p-dimensional vector for
each n=1,2,...; X, with or without a subscript, denotes a p-dimen-
sional random variable and F' denotes a p-dimensional distribution
function.

COROLLARY 1 The distribution of (S,—bs)/a. converges to a mormal
distribution N(0, o) and X, /a, converges to 0 in probability uniformly in
l, 1<l<l,, if and only if the following three conditions hold :

(11.13)  limS) f dF,(x)=0, for each ¢ >0,
n 4 .

|z[=eay,

L1  lim aL (= j; deF,,,(x)—b,,)=0,:
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(11.15)  lim ai?. b3 ( f s d Foa)— f = d Fox) f = dF,.,(x)) S

. n an Pn

j»k=1) 2,... y Dy
where V is any neighborhood of the origin and a,V={x; v=a,y, yc V}.

This is a generalization of W. Feller [6]’s Satz 1. Usually a,V is
taken as |z|<a, or ||z} < @n.

PROOF: Apply the theorem with F,, and b, replaced by F,(a,-) and
b./a,, respectively.

Let {Xu; 1=1,2,...,1,,n=1,2,...} be a sequence of random vari-
ables. If there exist sequences {a,} and {b,} such that the distribution
of (Xp+ +-++X,,—bs)/a, converges to a normal distribution and X,/a.,
1<1<I,, converge to 0 in probability uniformly in ! as n—co, then it
is said that {X,} obeys the central limit theorem. As before the a-
dispersion of a random variable X is denoted by Dx(a).

COROLLARY 2 Assume that there exists an a such that Ds,(a) >0 for
all n, and put D,=Ds,(a). Then {X,} obeys the central limit theorem if
and only if

(11.16) lim 37 f dFo@)=0, for each >0,

zl|=e Py
and the limits
a1 imZS( [ smdFu@-[ #dF@ [ wdFu@)=om

2
” Izl < Dy, lzl] < Dy Iz} < Dy

. (say)
2, k=1’ 2: ey D,

exist. In this case the distribution of
1
(11.18) E;(&,_ f zd Foy(a))

211 < Dy
converges to the normal distribution N(0, ¢) with mean vector 0 and second
order central moments o; defined by (11.17).

Proor: If (11.16) and (11.17) hold, (11.18)—(11.15) hold with

a=Dn, b,=31 [ 2dFu@), V=iz;llzll<1),
12| < Dy
hence, the distribution of (11.18) converges to N(0, ¢) by Corollary 1;
and X,/D, converges to 0 in probability uniformly in 1 <1<, by
(11.16). Conversely assume that, for some sequences {a,} and {b.}, the
distribution of (X,,+ ---X,,,—bx)/a, converges to a normal distribution
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and X,/a, converges to 0 in probability uniformly in I. Then, since
D,/a, converges to the a-dispersion D of the limit distribution by Lemma
4.4 and since 0<D<1, the above assumptions hold with ‘a, replaced by
D, from Theorem 5.2. Therefore (11.16) and (11.17) must hold by
Corollary 1. '

12. Lindeberg’s and Liapounov’s conditions
Let X be a random variable with E(] X|*)< «o*. Then
E(|X—-EX[)
will be called the variance of X and will be denoted by v(X). Then we
have
v(X)=E(| X-EX[)=E(| X)—|EX,

Iet F be a distribution function with f jz|2d E(a:)< «, and put
= f dF(z). Then "

f lz—m|*d F(x)

Ry
will be called the wvariance of the distribution defined by F. The
variance of a multi-dimensional distribution is equal to the sum of the
variances of its one-dimensional marginal distributions. A normal
distribution N(0, o) with mean vector 0 and variance 1, >}s;;=1, will
be called a normalized normal distribution. ’

Theorem 12.1 Suppose that each of X, has the vanishing mean

vector and the finite variance and put

Vi =0(X)),

Su=(vm+'vn2+ e +'Um”)i.
Let N(0, o) be a normalized normal distribution. Then the distribution of
(Xns+ -« +Xu,)/8n converges to the N(O, o) and X,/s. converges to 0 in
probability uniformly in 1<1<l, as n—>, if and only if for each >0

a2)  miS [ emdFu@=om 5,k=12...,p
n 1
" |zl<e 8y
The condition (12.1) is a generalization of the Lindeberg’s condition
well-known in the one-dimensional case. The theorem can be proved

* E denotes ‘mean value of’ or ‘mean vector of’.
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by making use of characteristic functions in the same way as in the
one-dimensional case, but here it is proved as a consequence of the results
of the preceeding section.

PROOF: According to Corollary 1 to Theorem 11.1 it is sufficient to

prove that (12.1) is equivalent to the set of the following three condi-
tions:

(12.2) lim 3] f dFo@)=0, for each >0,

|2[2¢ 2

.1 _
(123 lim-Ls: f 2 d Foy()=0,

2] <tn
.1
(12.4) lim =) e d Fu(@)— | 2;dFu(@) | 2:d Fu(@) )=an,
w3 b [z adr)

j’ k‘_"l’ 2: coy D
Assume (12.1). Add (12.1) with 7=k from j=1 to j=p. Then

1im§1072 f |2[*d Fu@)=Sl0;=1, for each ¢>0,
» " || <€ 2y

therefore, since from the definition of s,

(12.5) lim 1 s f |22 d Fox) =1,
n S, ! £y
it holds that
(12.6) limsig2 [ IslFdFu@)=0, for each <>0.
" Oa [2]2€ 8,

(12.2) follows from (12.6) and the following inequality :

1 .
zf dF"'(x)sezs:zﬁf |z |2 d Foy(@).

1z12¢ 8y [zl2e 5,

(12.3) follows from (12.6) and the following inequality :
sl saru@|<isf 1arar.@,

|21<sp (2|23
which follows from

[eaPu@ | [saFu@] = [ 4P J2- Ar)< L f1srar@),
l21<sy |21, 1z]28p

where we used that the mean vector of F,., is 0. (12.4) follows from

(12.1) with e=1 and the fact that
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' i<l o |
21£,<3:~’dF”l(x)L<sxdem(x |= 5 E‘!£r<3x,dF“,(x)!»0,

Conversely assume that (12.2)-(12.4) hold. From (12.4) we have
120 lim(23 [ laPdFu@-23[ zdFu@)=Sle=1.

|z1<8p, lz1<sy

Form the difference (12.5)-(12.7). Then
, .
hm( zf 121 d Fuu(w)+-L zlf 2d (@) )=

;qzall—‘

lz|2sn 1zl<sn
from which it follows that
(12.8) lim = 2 f xan.(m)l —0.
' Lx:l<a,,l

On the other hand
11 ;
129 |3 wiF@[ ndFe

1z|<sp lz1<en

‘1 2172 N2z
< 2[5(f mare) ] [3(f aar)]
<1ls [ wdF.@/
8n . 1z1<sn
hence, by (12.8), the left side of (12.9) tends to 0, and (12.4) becomes
(12.10) li”mslqzl} f %5 Fo(%) =035,
: " 1z <sp
Moreover
(12.11) ESS! f mwdem(a:)—-——Z f m,,,dF,.,(x)
' ‘8,, ! lz|<€e sy 121 <8y
<Inf aldf.e+isf  zaldfe
8, ¢ s
1z|<Le sp, 1z]28p 121<sn, 1212830

=esf Fu@+3 [ dFu),
¢ 12128, ¢ [E3=1E
hence, by (12.2), the left side of (12. 11) tends to 0, and this together
with (12.10) implies (12.1)
Next we shall consider the case when X, X, ..., Xy, are uniformly
bounded.
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COROLLARY 1 Let M,.=n‘1§1x sup | X, (w)|. Suppose that E X,,=0 for
all n, 1 and that )
M,

(12.12) lim ?’1:0.
Let N(0, o) be a normalized normal distribution. Then the distribution of
(Xt - - +X,.,n)/s,. converges to the N(0, o) if and only if

(12.18) hm -3 f 22 d Fu(@)=0u,  J, k=1,2, .

PROOF: From (12. 12) Xulsn 1=1,2, ..., 1, converge to 0 uniformly
in I with probability 1, hence, in probability. Next, for each ¢>0 there
exists an N such that M,<es, for all » = N, hence,

22, d Fo(x)= f ;2 d Fr(x), for n=N.
lzl<e s
Therefore, (12.1) becomes equlvalent to (12.18) and the corollary follows
from the theorem.

COROLLARY 2 Suppose that E X,,=0, and for some p>0,
[1apdFu@<e
R,

Sor all n and I, and that
(12.14) lim

gite Zflx|2+Pant(x) 0.
Let N(O, a) be a normalized no'rmal distribution. Then the distribution
of (Xt - +Xu,)/sn converges to the N(0, o) and Xufs., 1<I1<1,
converge to 0 in probability uniformly in l, if and only if (12.13) holds.
(cf. W. Hoeffding and H. Robbins [10], Appendix).

PROOF: For each >0

isf mdmw} <25 IekdFu@

lz]2e 8y {z|>e sy

b3 f |27 d Fu(@).

P82+P
'This together with (12.14) implies that for each ¢>0
imLs [ szd Fu@=0, k=12 ...,p

n T
S,. jzl>e 8y
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Hence, (12.1) becomes equivalent to (12.18) and the corollary follows
from the theorem.
(12.14) is called Liapounov’s condition.

13. Generalization of P. Lévy’s theorem

Let {X,} and {Y,} be sequences of p-dimensional random variables.
If for any pair of sequences {a,} and {b,} the convergence of (X —ba)/an}
in distribution implies the convergence of {(¥,—b,)/a,} in distribution
and conversely, then {X,} and {Y,} are said to be equivalent with
respect to the convergence in distribution.

LEMMA 138.1 If lim Pr{X,xY,}=0, {X,} and {Y,} are equivalent
with respect to the comvergence in distribution.

PROOF: This is obvious from the inequality

SUP | Fo(@n +ba) — Gu(@n@ +ba) | < Pr (X, 35 Yo},
where F, and G: are the distribution functions of X, and Y,, respectively.

LEMMA 13.2 Let X and Y be p-dimensional random variables and
let Dx and Dy be the dispersion functions of X and Y, respectively. If
PrX=<7Y)<8§ < 1/4p),

(18.1) Dy(a—2p8) < Dx(a) < Dy(a+2p8) for 2pS<a<l—2ps.

PROOF: (i) Case p=1. Let X’and Y’ be other real random vari-
ables such that the two-dimensional random variable (X’, Y’) is inde-
pendent of (X, Y) and has the same distribution as (X, Y) has. Let ¥,
and Z, be the mean concentration functions of X and Y, respectively.
Then by definition,

12O~ 1= B, b )-B( )
* ey (@ =Xy Er(Y—Y')2 /|
i 2 2
<g|- £ .
PRPH(X-X'? P+ (Y=Y
SPrXx<Y)+Pr(X'x<Y")<2s,
Fix an « such that 0 <a<a+25<1, and put Dy(a)=I. If [>0 then,
since ¥, is continuous at the point !, #,()=a and
Pr(l) S Px(l)+28=0a+ 28,
hence, ! < D;(a+25). This holds also when [=0. Therefore
Dx(a) < Dy(a+28) for O<a<a+26<1.

Interchanging X and Y, we have

<Pr(X—X'Y-Y')
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Dy(a) < Dx(a-lj28), for O<a<a+28<1. ;
Thus, (18.1) holds for p=1. (ii) Case: p>1. Let X=(X,, X,, ..., X,) and
Y=(Y,Y,...,Y,). Let X=X/, X/,..., X!) and Y’—(Y,', Y,...,Y)
be other p-dimensional random varlables such that X/, X/, ..., X! are
independent, Y7, Yi, ..., Y; are independent and (X/, Y}) has the same
distribution as (X, Y; has for eachj=1,2,..., p. Put X*=X/+X/+.-
+X, and Y*=Y/+Y/+---+Y.. Then
Pr(X*=Y")<35PrX/=<Y)=%,Pr(X;x7Y)
=pPr(XxY)=<ps _

Hence, by the one-dimensional case, (18.1) holds with X and ¥ replaced
by X* and Y*, respectively, which implies that (13.1) holds since by
definition Dx=Dyx* and Dy=Dyx*.

LEMMA 13.3 Let v and D be the variance and the dispersion function
of a random varicble X respectively. Then

(13.2) Vv 21vV(1—a)2 D@), 0O<a<l.

PROOF: It is sufficient to prove the lemma when X is one-dimensional.
Denote by F' the distribution function, and by ¥ the mean coneentration
function of X. Then

1— m) f lfz dF( )_l z’dF(a:)' l2 ,
hence
(13.8) () = 1—2vl2, O<l< .
Fix an ¢, 0<a<1, and put {,=D(a). If ,>0 then ¥(l,)=a, hence from
(18.8)
a=1—2v/D%a)
which implies (13.2). If /,=0, (18.2) is trivial.

THEOREM 13.1 Assume that there exists an a such that Ds (a)>0 for
all n, and put D,=Ds,(a). Let S,=(Sny, Suz, - - -, Sup) and let D(S,;) and
D(Sp;+ Snz) be the a-dispersions of S.; and Su;+ Sm, Tespectively. Assume
that

(18.4) lim max f dFy(x)=0, for each <>0.

(z])>eDy
Then, for some sequence {a.} and {(b,} the distribution of (Sa—bu)/an
converges to o nermal distributvon, if and only if the following (18.5)
kolds and the limits (18.6) and (18.7) exist:
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(13.5) lim ) f dF.(@)=0, for each >0,
" U Yi>en,

(13.6) lim PG 10, p,
n [ D,,, .

(13.7) limﬂs-’%i'—s"—‘), i k=12, ..., p.

The condition (18.4) represents that X,,/D,, 1 <!<l,, eonverge to
0 in probability uniformly in / as n—> o, i.e., that each term of X, is
asymptotically individually negligible with respeet to the dispersion of
the sum S,=Xp+---+X,,. Under (13.4), (13.5) is equivalent to the
condition that max [ Xa |/ D converges to 0 in probability as n— <, i.e.,

that the greatest term of X,;, 1<1</,, is asymptotically negligible
with respect to the dispersion of the sum (cf. section 11).

PROOF: Assume that there exist {a,} and {b,} such that the distri-
bution of (S,—b,)/a, converges to a normal distribution. Then so do
the distribution of (S,—b,)/D, by Corollary 2 to Theorem 5.6. Moreover,
X./Dny, 1 <1<1,, converge to 0 in probability uniformly in ! by (18.4).
Therefore (18.5) holds from Corollary 2 to Theorem 11.1. Now write
bn=(nss O3y ..., buy). Then the distributions of real random variables

(Sus—bn)/Dn and  {(Sns+ Sar) — (bnj+bne)} /Da
converge as n —> <, hence, the limits (18.6) and (13.7) exist.

Conversely, assume (13.5) and the existence of the limits (13.6) and
(18.7). Since (13.5) implies

lim inf {e+ 3 j d Fo(@)} =0,
n >0 i

there exists a sequence {¢,} such t"}:;“;:_)o and
(13.8) py f dF.(x)=5, (say)—> 0.
Define X/ by i

2=(0" i (= o

and put S,=X/+X,:+---+X),. Then we have
(18.9) Pr(S,x<S)=< ‘T‘_.Pr (X > X1)=8,. -0,
hence, by Lemma 138.1, {S,} and {S.} are equivalent with respect to
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the convergence in distribution. Let D. be the dispersion funection of
S!. Then from Lemma 18.2 we have

D;(a+2ps,) = Dy(@)=Dn, if a+2p8.<1.

Fix an o« such that a<a’<1. For sufficiently large n, we have o' >a+
2ps,, hence

D(a') = D)(a+2p8,) = D,.
Put Vo(S))=s,. By Lemma 13.3
8n =V (1=d)/2 Di(),
hence, "
(18.10) 8n = V(1 —a)/2 D,
for sufficiently large n. Moreover, put
M,=max sup|X/(w)—E Xi.

Then
(18.11) M, < 2¢,D,.
(18.10), (18.11) and lim e,=0 imply

lim (Ma/s.)=0.

From Corollary 1 to Theorem 12.1 any subsequence of the distributions
of (S!—ES!)/s, has a subsequence converging to a normal distribution
with mean vector 0. Therefore, by (13.9) the case is the same with
(S,—E S})/su, and hence, also with (S,—b,)/D, by Corollary 2 to Theorem
5.6 where b,=ES]. We shall show that the limit distribution does not
depend on subsequences. Assume that the distribution of (S,.,—bne:)/ D,
converges to a normal distribution N(0, ) as n(¢) > . Then the dis-
tribution of (S,.);—buri)/Daeiy converges to N(0, ¢;;), hence by Lemma
4.4 the limit

tim Do) _g
n(i)

exists, where d is the a-dispersion of N(0, ¢;;). From the existence of
(13.6) d, the a-dispersion of N (0, ¢;;), does not depend on the subsequence.
Hence, o;; is independent of the subsequence for each j=1,2,..., p.
Next, the distribution of [(Sus;+ Sucisr) — Bucerj+bucere) /Dy CONVerges to
N(0, ;;+20;+ o), this together with the existence of (13.7) implies
that o;;+20;+ 0. does not depend on the subsequence, hence o; does
not depend on the subsequence. After all, + is independent of the
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subsequence, and the distribution of (S, b,.)/D converges to the normal
distribution N(0, o).

COROLLARY Assume that each term of Xu, 1 <1 <l,,, 18 a.symptotwally
mdwzdua,lly negligible with respect to the dispersion of the sum S,=X,,+

+Xm,, and that the class of the distribution of S, converges to a class.
Then the limiting class i8 mormal if and only if the greatest term of
X, 1<1<1,, is asymptotically negligible with respect to the dwpermn
of S,.

14. Feller’s criterion and the attracﬁon domiim of normal distributions

In this section we wan{ to generalize some results of W. Feller [7]
to the multi-dimensional case.

THEOREM 14.1 Suppose that 0 s a median vector for each X,. Then
{ X} obeys the central limit theorem if and only if there exists a sequence
of positive numbers {A,} such that

(14.1) lim 33 f d Fo()=0,
121> 2g '
(14.2) lim 2 f |zt Fiy(z)= oo
and the limits ' MSA._
149 tim25Y [ smdFu@— [ 5dFu@) [ 5dFu@)=cs Gay),
RPN le1<n (P
. 7:k=1:29--01p-
exist, where ,
(14.4) ai=3 { f le’dF..,(w)—[ f xdF,,,(x)i
121< 2 lel<3, -

In this case the distribution of (Sw—ba)/a, converges to N(O, o) where
o=(oy) 18 defined by (14.8) b, is defined by

(14.5) B=3 f 2 d Fo(z).
) ¢ I8l <Ap

Note that (14 3) (md 14 4) imply that

(14.6) | ;aj,—l

‘Mtheoremholdscvenzf >’ and ‘<’ are simultuneously replacedby
‘=’ and ‘<’, respectively. ‘
PROOF: To prove the ‘if’ part, assume (14.1)<(14.3) and define a,>0
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and b, by (14.4) and (14.5), respectively. By the Schwarz mequahty
and the fact that 0 is a median we have

(f =ir@)s<[ #if@[ dF@<l| fdFue.

121<3y,, z; >0 lz]< 2y, , >0 1z]< 2y
Similary , N
2
2,dFu@) <+ [ ad Po(@).
12| Ap, 2; <0 2 lel< A
n* < n
Therefore, since »
2,d Fi(z)=0 and f %,d Flu(x) <0,
212y 2y >0 ‘ 1zl <Ay, ;<0
we get :
2
(f =iFr@) <3 [ sdfu@.
121< g 121< Ay

Summing over j we obtain

lf xdF,.,(z)| lf 12 1°d Fu(@),

121< Ap 171< Ay

this together with (14.4) implies

(14.7) a>1ls [ 1=raFu@.
277 121< 2y »

From (14.2) and (14.7) it follows that

(14.8) lim % — .

Define X/, by
{Xm(w’); i [ X)) <2,

, otherwise,

So’t= '1+X,:s+ s +X:l,u
M,=max sEpIXG(w)—EXGI-
Then X/, X%, ..., X, are independent for each =,
(14.9) ' M, <24, b,=ES!, ai=v(S),
and (14.8) means that the covariance matrix of S!/a, converges to o.
From (14.8) and (14.9) we have

(14.10) lim M»

n->oo a"

X (w)=
and put

=0.
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Then from Corollary 1 to Theorem 12.1 the distribution of (S.—b,)/a,
converges to N (0, s). Moreover

Pr (S, & 8!) < 3IPr (Ko + X =3 Pr (| Xu | > 40)

=5 [ dFu@,

121> 2
this together with (14.1) implies that
lim Pr (S, =% 8.)=0.

Therefore, from Lemma 13.1, the distribution of (S,—b,)/a, converges
to N(0, o). The asymptotic uniform negligibility of X.,/a. follows from
(14.1) and (14.8). This completes the proof of the ‘if’ part.

To prove the ‘only if’ part, assume that {X,;] obeys the central
limit theorem. Then from Corollary 1 to Theorem 11.1 we have for some
sequence of positive numbers {a,} and for each ¢ >0

(1411) lim3) f d Fou(2)=0,

121>¢8 ag

(14.12) lim _1;2( f 25, d Fo(@)— f 2,d Fol2) f :c,,dFm(x)>=aj,”
"ot Izi<eay, Iz1<eay lzl<eay

i, k=1,2, ..., p.
We may assume that 3]s;=1 without loss of generality by Theorem

J .
5.2. From (14.11) and (14.12), for each positive integer m there exists
an n, such that, for all » > n,,

1
E,f dFu@ <,

121> a,,/m
lgzl(j 2md Fu— [ 2,dFo [ m,,dF,.,)— ,.kf< L k=12 .. 0
T lz]|<ap/m 1z1< ap/m |z]< an/m m

It may be assumed that
) n1<n2<ns<"' .
Define 4,, for n > n,, as follows:

(14.13) Ao=n fOor 7, <7 < Mpyy .
m .
Then if n=>n,, ‘
1
z'.f dFu(@) < -,

12|>2p
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L gt on] zamod<l

Hence, we have (14.1) and
(14.14) 1im;152'( f 2,7, d Foy— f v, d Fy f :v,dF,.,>=aj,‘,

121< Ay 21<2n l2l< g
j k=1,2,...,p.
Sum (14.14) with j=k from j=1 to j=p. Then 3)s;;=1 being assumed,

14.15 lim % —1,

where a;, is defined by (14.4). From (14.18) lim (a,/4,)= o, this together
with (14.15) implies lim (a;/22)= o, hence we have (14.2). From (14.14)
and (14.15) it follows that (14.3) holds. Thus we have deduced (14.1)—(14.8).
_ It is possible to derive the ‘if’ part from Corollary 1 to Theorem
11.1. The proof proceeds as follows. Assume (14.1)-(14.3) and define
a, >0 and b, by (14.4) and (14.5), respectively. It is sufficient to prove
(11.13)«(11.15) with V={z; |2| < 1} from these assumptions. From
(14.1) and (14.8) it follows that (11.18) holds for each ¢>0. From (14.8),
a, > 4, for sufficiently large n. Write b,=(bu;, bus, ..., bn,) Where b, is
defined by (14.5). Then, assuming a, > 4,, we have

%(gf a:,dFm(x)—b,.,) = algf z;d Fpy(x)
" 1zi<ay n In<lzl<ay
=33 f d Fo@),
121> 2y

this together with (14.1) implies (11.14) with V={z; |x|<1}. Now for
n such that a, >2,

_l_z(f :v,-x,dF,.;(a:)—f xﬂdem(x))l

2
7
an 1z1< ag 121< 2y

<z5f lemldFu@ <3 [ dFu@),

Ap <zl ay, |2I>2n
and

2([ x,.dF,,,f x,dF,.,—f_ x,.dF,,,f xden,)

]
|21< ay 121< ap, 12]< Ay 1Z2I< Ay

g}( f 2;d Fou() f 2o d Fr(@) + f 2,d Foy() f x,dF,.,(:v))'

Ap<lizl<ay 1zI< ey [21<2p m<Lllzi<ay

[ R

a,

3
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<23 f Df&(ﬁ).

these together with (14.1) 1mply ;
. r1 |
(14.16) lim [7;52.( f 2100 Fi— f z,dFy [ z,@F,,,)

121< ay Ml<an ‘ 1z1< ap
gz(f‘ T d Fyy— f x,dF,.,f x,dF,,,)]=O
: 1zi< 2y 1212y 1zl<2y

(11.15) with V={z; lz]<1} follows from (14.16) and (14.3). Thus the
proof is completed.

We shall need the following

LEMMA 14.1 Let X, X,,... be independent random variables with the
same distribution function F and assume that for some sequences {an}
and {b,}, the distribution (X,+---+X,—b,)/a, converges to a normal
destyibution N(0, o). Then we have
(14.17) lim a,= oo, lim (a,,,/a,)=1.

PROOF: Take an a such that D.(a)>0 and denote by D, the a-dis-
persion of X;+---+X,(n=1,2, ...). Then we have
(14.18) 0<D,<D,< ---,
(14.19) lim (DyJa)=D, 0<D< oo,
where D is the a-dispersion of N(0 o). From (14.18) it follows that
lim D,=e or 0 < lim D, < o exists. If the latter occurs then from
(14.19) finite lima,=a exists, 0<a < o, and from Theorem 5.2 the
distribution of X, + - -- +X,—b, converges to N(0, a%s). Let @ and v be
the characterlstlc functlons of F and N(0, a’s). Then we have

hm qo"(t) e~ "t =n(2),
hence,

. 1, if B =1,
lim | p(8) [* =] ¥(¢) | = { . ("th' ::ivﬁe

which contradicts the fact that y(¢)=exp [-r%ft"atJ . Therefore it must

hold that lim D,= c, and this together with (14.19) implies that
lima,= . Now, since the distribution of (X, + - - - +X,,,—bus,)/@n,, con-
verges to N(0,.0) and Xm/a,.,,1 converges to 0 in- probability, the distri-
bution of (X;+ -« +X,=bn.))/@ns, converges to N(0, o) (see H. Cramér
(2], p. 254). As the distribution of (X,+ - - +X,—b.)/a, converges also
to N(O o) it follows that lim (a,.,/a,)=1 from Theorem 5.4.
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When the hypothesis of Lemma 14.1 holds, F is said to belong to
the attraction domain of the mormal distribution N (0, o).

THEOREM 14.2 Let F be a distribution function with the vanishing
median vector and let N(0,0) be a normalized normal distribution,
Slo;=1. Then F belongs to the attraction domain of N (0, ¢) if and only

zj“ the following conditions hold :

u? f d F(o)
(14.20) lim — > —0,
"'mf |z|2d F(x)
|2I<u
o Iu(U) -
(14.21) lim 720 —op G k=12, ...,
where
W22  aw=[ smdF@)-[ 2,dFe [ ndFe),
[zl<u Iz|<u 1zl<w

(14.23) o= [ Ia:lzdF(a:)——l / a:dF(x)r.

Jzl<w l21<u
Let X be any random variable with distribution function F, and
define X, by
X ()= { Xw), if | X(f.v)l =u,
0o, otherwise.
Then o,(), 4, k=1,2,...,p, and v(u) are the second order central
moments and the variance of X,, and o,(uw)/v(u) are the second order
central moments of the normalized variable (X,—E X,)/Vv(X,).
PROOF OF THEOREM 14.2 To prove the ‘if’ part, it is sufficient, by
Theorem 14.1, to deduce from (14.20) the existence of a sequence of
positive numbers {2,} such that

[limnf d F{(z)=0,

121> 2n
(14.24) i lim f |2]2d F(@)= o,
12]1< 2y
{lim 2,= co.
If for some wu,
d F(z)=0,

12]> wy
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then a sequence {,} satisfying (14.24) is obtained by
An=nY*,
Therefore we may assume that for all >0
d F(z) > 0.
12> u
For each positive integer m, define u, by
—rin { 1
p...-—mln{,u,f dF(w)sm} .
121> wn
Then we have
(14.25) lim pp= oo,
[ 1erdFe [ |zrdFw

(14.26) [EES™ , > ltlszmﬂ .
A )1 Hm d
(2) m (2)£rl>uﬂz)
From (14.20), (14.25) and (14.26) we have

lim 2 [ |zPd F@)=co.

m o0

™ )zl<im

Hence we can choose a sequence of positive numbers n,<n,<f,< ---
such that for each »=1,2,...,

@f lz|tdF(z)=p?, for n=n,.
Hnp [EIE T
Define 4, by
0= pinp for n,<n<my.
Then we have
lim 2,= oo,

2 [ 1zrar@=p

[z]<2n L for Np N < Npyy
n f dF@) <L
121>y »

hence, (14.24) holds

Conversely, assume that F' belongs to the attraction domain of :
N(@, o) and let {a.} be a sequence which satisfies the condition of
Lemma 14.1. Then from Corollary 1 to Theorem 11.1 we have
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(14.27) lim 7 f d F(z)=0,
12|>ay
(14.28) lim E;f?_“"lq,.,,, i k=12, ...,p.
From (14.28) we have
(14.29) lim ﬁ"%é Soy=1,
This together with (14.27) implies
a f d Fz)
lim [2]>ap =0,
nsw v(a.)
hence,
a f d F(z)
(14.30) Clim——"2 .
[ 1erdFE
1Z|< ap

From (14.17) there exists N such that
On < 2a,  for all n>=N.
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We may assume that a,=D,/D (see the lproof of Lemma 14.1), hence
that a, < @n,, for all n. Let {u,} be an arbitrary sequence such that

(14.81) U S Up < Oy
Then for n =N, as a,<u, <« 2a,, we have

w [ dFe) saif dF)

121> up < 12}>an

[ zrare) [ iepdrm’

|2| <uyp l2l<ap

this together with (14.80) implies
.| dF@)

lim ——>* g,
== [ lerdF@)

|12|<ug

Since u, is arbitrary except for (14.81) and since lima,=o, we have

(14.20). From (14.28) and (14.29) we have

(14.32) lim %% %) —, . k=12 ... p.
m= 9(a,) ,
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From (14.29) it follows that the sequence

(14.33) { G . 1,2, ...} is bounded.
nv(a,)
From (14.27), (14.83) and a, <wu, < 2a, it can be proved that
(14.34) lim ( 22®%s) _ 23(@) \_¢.
n( wa)  (a,) )

(See the proof of (14.16)). (14.32) and (14.34) imply

lim %E%z”’*’ i, k=1,2, ..., p.

Sum these with j=k from j=1 to j=p, then
lim 2(%) 1,
»a,)
From the last two equations it follows that

v(u”) =0 j, ’G=1, 2, ceey Dy

hence, (14.21) holds.

THEOREM 14.8 If F belongs to the attraction domain of a normalized
normal distribution N (0, o), then for each a such that 0 < a< 2, the a-th
absolute moment of F is finite: '

[ 1srdF@<e,
Rp
hence, the mean vector of F ‘
m= [ ©dFz)
J,

18 well defined and the distribution of
('Xl!+ e +&—'nm)/a'n

converges to N(0, o) for a sequence {a,}.
The proof runs in the same way as in the one-dimensional case.

15. Reduction to the one-dimensional case

By now, in this part, the various versions of the multi-dimensional
central limit theorem have been studied from Theorem 11.1, which was
proved from the general convergence theorem on the infinitely divisible
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multi-dimensional distributions. In this section we wish to show that
Theorem 11.1 in the multi-dimensional case can be reduced to that in
the one-dimensional case.

First let us notice the following fact.

LEMMA 15.1 Let V, and V, be two neighborhoods of the origin.
Then under (11.2), (11.8) and (11.4) with V=V, are equivalent to (11.8)
and (11.4) with V=1V,, respectively.

PrROOF: This follows from the following facts:

(15.1) lizn(zl f 2dF,fo)- 3] f :vdF,,,(a:)):O,

(152  lim [zl:( f 250, 4 Fa()— f 2,d F(z) f x,,dF,,,(x))

vy Vi

~5Y( [ 2md Fu@)~ [ 2,dFue) [ 5dFu@)]=0,

Vg . .
5, k=1,2, ..., p.

To prove these, note that there exist positive numbers ¢ and & such

that
S0, yC V,C 80,8 for j=1,2.

([ #dFu@- [ 5dFu@)|

Vi

Now

<3([ ImldFu@+ [ 121dFu@)

ViVt Vg~ Vit
_<_2821f dF, (), §=1,2,...,D,
|z]l=e :

and this together with (11.2) implies (15.1). Similary
S( [ smidFu@— [ omdFu@)| <85 [ dFu@),

v Ve Jzl=e

2( f 7;d Fru(z) f 0y d Fy () — f w;d Fiy(x) f a:,adF,,,(x))I

7
V1

= Zl:[(ijanz—fwdeM)f%dFm+ x,dF,,,(fx,dF,,,-— xde”,)]‘
Va Va

Vi V2 "1 Vi

<5 [ dF@),
! [z]>e

and these together with (11.2) imply (15.2).
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The following lemma is useful for the reduction of the multi-
dimensional central limit theorem to the one-dimensional case.

LEMMA 15.2 Let {X,} be a sequence of p-dimensional random wvari-
ables. Then the distribution of X, converges to a normal distribution N(0, ),
if and only if for each t € R, the distribution of t'X, converges to the
distribution N (0, t'ot). ’

This is well-known and is easily proved by making use of the
characteristic functions. Notice that if #st=0, N(0, ¢st) denotes the
unit distribution which has the whole probability 1 placed in the origin.

Now, in the one-dimensional case, Theorem 11.1 becomes

THEOREM 11.1' Let &, &, ..., €, be independent real random vari-
ables with distribution functions H,,, H,, ..., H,  for each positive integer
n, let {B,} be a sequence of real numbers, and let v be a non-negative
real numbers. Furthermore assume that

lim max f d H,(x)=0,  for each &> 0.

l2|>e
Then the distribution of €, +&,,+ -+« + €, — Bn converges to the distribution
N(0, v), if and only if the following three conditions hold :

lim Zz} f d H,(x)=0, for each >0,

|zl=¢

lim (g f| KivdH,,,(x)iﬂ,,):O, |

1i3nlz< f xzdIiw(m)—( f de,,,(x))z)ﬂ.
[zi<1 lzl<1

If v>0, this theorem is a slightly modified form of a well-known
version of the one-dimensional central limit theorem (see W. Feller [6],
Satz 1), for the distribution of &, +--. + &, — B, converges to N (0, v)
if and only if the distribution of (&,,+--- +6u,—B)/V v converges to
N(0, 1). If v=0 Theorem 11.1’ becomes a version of the law of large
numbers. : :

LEMMA 15.8 If (11.1) holds, then Sfor each t € R, and for each ¢ >0
lim max f d F(z)=0.

n
[Yz)=¢€

This is obvious from
dF (x) < f dF,(x), for t=0,

1zj2e [E2p=270]
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which follows from |#z| <|t]-|z]|.
Now we can reduce Theorem 11.1 to Theorem 11.1’. This follows
from Lemma 15.2, 15.3, and the followmg

LEMMA 15.4
(15.8) lim 3} f dF,@)=0, for each >0,
Wzize : E
(15.4) 1i:n(§: f t’:vdF,,,(x)—t’b,,):
W< .
(15.5) Ii:nzl}[ [ ¢ardFu@- ( f t'xdF,,,(x))’]=
le'z| <1 ¢ xj<1

hold for each t € R, if and only if (11.2)~«11.4) hold.

To prove the ‘if ’ part assume (11.2)(11.4) and fixa £ %0 (if ¢=0,
(15.8)~(15.5) are trivial). Then (15.8) follows from (11.2) and the follow-
ing inequality:

py f dF @) <3 f d Fy(x).

[z[>e lz|= /8]
We may assume that V={z; [z| < 1/|t]}. Now

[ tzdFu@-—th,

1<t

(= f t’a:dF,,,(a;)—t’b,,)+2 [ t'sd Fiy(x)

l
|z1< 1/18] 12|, |22 /)2

=t(3f  sdFu@-b,)+6 s ar.@,
lel< 1/Lef 121217121
where || <1, and this together with (11.8) and (11 2) implies (15.4).
Furthermore

g}{ f (t'x)zdF,,,(z)—( f t'xdF,,,(x))z}

¢z <1 ¢z <1

=3 { f (t’x)’dF,.z(w)—( f ted F, "‘(x)y}

1z]< 17]¢) l2|<1/12]
2
+2{ f (t'm)zdF,,,(x)—( f t'a:dF,,,(a:)) —2 f t'z d F(z) f s d Fo(o)}
i 1#2[<1, [2]21/¢] [e|< 1, [z|21/1t] [z]<1/1¢] )<, (2|2 1/1¢f
=T,+T, (say).

T, tends to t'st by (11.4), and T, tends to 0 as
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|T21_<_32f d F ().
! [zl 1/]¢]
Therefore (15.5) holds.
To prove the ‘only if ’ part, assume that (15.8)-(15.5) hold for each
teR,. Then (11.2) follows from (15.3) and the following inequality :

[ dF@=55[ dFe.

21z ¢ iz eV
Write b,=(b,, b2, ..., b,y). Then for each j, we have

[ zdFu@-b,

lz]<1

:(2[ :v,-dF,,,(m)—b,,j)‘—z_.‘f z,dF (%)

|zj|<l ]zil<l, [z{=1
=( " )+ogf AF (@)
lz[=1
= U1 + U2 (Say).

U, tends to 0 by (15.4), U, tends to 0 by (11.2), and hence (11.3) with
V={x; || < 1} holds. Furthermore from (11.2) and (15.5) it follows
that '

imS{ [ (¢ dFu@—( f t'xdFux(x))2}=t’at
[zi<1 ’
(see the proof of Lemma 15.1). Smce thls holds for each £, (11.4) with
V={z:|z| < 1} must hold.
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ERRATA _ }
These Annals, Vol. II, No. 1, 1950. P. 18 insert after last line of
section 2

“In these cases we have not the maximum value but ohly the
stationary value just as the minimax solution. If we want to obtain
the maximum value, we must estimate the rational rate %, and %,

from experiences in the past time. This fact holds also in the follow-
ing sections.”

Vol. V, No. 1, 1953

Page line

27, 9, read M— 1—(—]”“—1127@‘_1) instead of the right hand side of (6)

27, 12, insert under the assumption after ‘‘we have”’
=N/R

27, 14, read 2(M-1) +O(1—::7—) + O(%) instead of the right hand side of (8)

27, last, read (strike off the table)
28, 5-6, read (strike off the sentence ‘‘under the condition M=R(R—1)

and R+1"

Vol. VI, No. 1, 1954
Page line M o
13, 12, read ( Mp, )p””:q"‘% instead of ( Mp, )p""”cp”"t
14, 3, read 0.96 N instead of 096 N
15, 6, read ...kl/e"‘Dz(X)}é%2 instead of ...kVe:*D’(X)g%-2
15, 28, read X, instead of X,
24, 7, read —py(2)pn(2)... instead of  — gy (1)us(2). ..

M y'dh 3 N, 12Nz Y
24, 10, read (X —-X)... instead of ¥ X, -X)...
25, 9, read 2N‘N2(Y —T¥)t---  instead of 2%N*(Y b AEE

+N]1\/_1:72(N,’+M’)-~- instead of +N&1§(M’+M“)~-

28,2 from the bottom, +O(n~*?) instead of +O(™*")

80, 11, read —-m _ 4Pu 4 ... ingtead of — 2m _ 4w |
MM a1 Moz MMz M11fe2
36, 3 from the bottom, the coming issue instead of this issue



Page line
54, 6, read [20], Lemma
68, 28, read e"*®

97,. 6, read (X, Y)) has
98, 2, read Iimignﬁ

" n

instead of
instead of
instead of

instead of

[20, Lemma
el’™®
(X}x YJ has

i D (S,,_.)
hf‘n 21 5

n



