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1 Introduction

Main problems in statistical surveys are the assignment of the
population, i.e., fixing the sampling field, and the estimation of the
universe parameter, such as the arithmetic mean, from data. Once the
population is fixed, we can estimate its mean (which equals to the
universe mean in value) from the sample mean or test statistical
hypotheses in regard to some parameters. But for the present these
estimation and testing are not always treated effectively from the same
points of view. For example, we adopt always the method of stratifi-
cation of the universe for the improvement of accuracy of estimation,
but even in such cases we are sometimes obliged to use the method
of testing hypothesis which is valid only for simple random sampling.
In this paper we shall treat the problems concerning stratified random
sampling from practical points of view.
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v 2 Stratification for the improvement of accuracy

Suppose there is a universe of size N, each element of which has a
characteristic X. We take a sample of size » from this universe by
the simple random sampling. Let z, 2, ..., x, be a sample of size =.
Then the sample mean

n

E:let
n

<=1

~ is an unbiased estimate of the population mean X, and the variance
of x is

2/~ - N—n o
D¥(®)eanr. = o 2.1)
where % is the population variance and the suffix indicates the simple
random sampling. ,

The improvement of accuracy, which means to make D*¥).,. smaller,
is achieved by stratification, that is, by grouping homogeneous elements
into R groups in regard to the characteristic. We call each of these
groups ‘‘stratum’ of size N; when it contains N, elements, where
the suffix indicates the group and runs over (1,2, ..., R).

From each stratum we take a sample of size 7, by the simple

random sampling (¢=1, 2, ..., R) and define the sample mean as
. R
F= 11? SNz, 2.2)
where z; #;ll— .E‘Ix,,-. Then the variance of this sample mean is
t 9=
2 _ 1 & : N —n, o}
D@a= N (2.3)

where o; is the population variance in the ¢-th stratum and the suffix
st. indicates that the variance is that in the case when stratification is
carried out.

We get almost always

Dz(i)mll. >D2(E)st. . (2'4)
hence we can improve the accuracy of estimation by means of strati-
fication.

2.1 Selection of controls for stratification
The effectiveness of stratification is such as mentioned above, but we



A STUDY OF THE STRATIFIED RANDOM SAMPLING 3

must consider by what control we should perform stratification. Of
course we cannot use the characteristic X, about which we have not
any knowledge or knowledge enough to make use of before the survey.
Usually we may, however, have some characteristics which correlate
highly with X. Let these characteristics be Y, Z, ..., W. When we
know only one of these characteristics, we take that one. But when
we know more than two of them and we are allowed only to use two
of them for the sake of simpleness of the procedure of stratification,
we meet the problem ‘‘which two should we choose?”’ ‘

Now suppose we have chosen two characteristics Y, Z, and let p be
the multiple correlation coefficient of X to ¥ and Z, and r,, r,; and
rys the simple correlation coefficients between X and Y, X and Z, and

Y and Z, respectively. Then we have

2 2 T23

pi= 7"‘3+7';_72”:'12'rls"'zs =f (say) (2.1.1)
— 73

If we can get the greatest improvement 'o , f/‘ j%

of accuracy by means of two controls ﬁ 0
Y and Z, the value f then attain the W
maximum value. From what values of -1 fzco

712, T, and 7, can we get the maximum

value f ? Tos
Put _r12=l cos @, ry=Ising (2.1.2) ,
Then we have feom
: 0 o
f=l‘t1;kL§f (2.1.8) jﬁm

1—rs3 0 >0
where k=sin26. The right-hand illust- - Zrdz/
rations show relation (2.1.8). F=00
(i) When k=1

l2

f=
147y
Hence the niveau lines f = const.
are parabolas.

0
(ii) When k=—1 ,% ¢
o -1
f= 1

—Ts

]
Similar to case (i) ® V&2
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(iiiy When k=0 . :
. f——

lrz;

Hence the niveau lines f=const. are ellipses.
(iv) General cases.

=0 ;l krzs
1 7‘2
If k=0, we have niveau curves with the maximum value [ at the
values of r,; near 1 or —1.
Hence when k==+1, that is, r,==+7r, f attains its maximum
value at ryu==x1; otherwise f becomes larger according as r, comes

‘Table 1. near + L.

R e B Table 1 shows these circum-
e | e Tm = k k ferences. As is seen from these
l 9| .1684| .41 figures the correlation coefficient
4 4 :3 ;33’53 ;é? Co1 between Y and Z must be small,
i -.4| 5338 .72 when Y and Z have the equal
9| .2947 | .54 correlation - coefficients with X,
4 2 ot 1631 40 40,41 and on the contrary, it must be
~.4| .3143| .55 large when Y and Z have the
49 82| .92 different correlation coefficients

Coo 4 0w x
If there are many character-

istics which are able to be taken as controls for stratification, the

conditions for adopting some of Y, Z, ... W, become much complicated.
If three controls, for example, such as Y, Z and W are adopted, we
have the increase of the square of the multiple corre]atlon coefficient
as follows:
g=dp*= {ru(l—rd— "'%4(7'12 —T1575) = T'5u(Ts3 ‘“"'12"'23)} i (2.1.4)
1 =1 — T — 1+ 2ryryyry ,
Here the niveau surface g=const. becomes an ellipsoidal surface with
variables ry,, 7, and 7, and g attains its max1mum value for many
different combinations of r,, 7, and r,,.
‘When n—1 controls have been already adopted and one control is

newly adopted, the increase of the square of the multlple correlation
coefficient is

_ nt LTon, Tony « ooy Taogm)}?
g=dp*= {ar, any T'gn, s Tn—1n)i” 2.1.5
- P B+ QT sns Tany « ooy Taor,n) ' ( )
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where o, B8 are constants, and L, @ a linear formula and a ‘quadratic
formula with regard t0 71u, T2n, o« .5 Tat,ny respectlvely So, the surface
g=const. becomes a hypere]hpsmda] surface.

2.2 Optimum stratification by means of one control

Let us consider the case when we stratify the units of the popu-
lation by means of one control Y which is highly correlated with the
characteristic X. Let the distribution function &(y) of ¥ be known.
Then we divide the population into R strata from which we take
sample by the proportionate sampling, and we want to estimate the
total value of X. How should we stratify the population in order to
minimize the variance of the estimate of the total value? The following
idea comes from the paper of Hayashi and Maruyama [1]. In this case
the variance of the estimated total value z is

2 < A2 N,— Ny o‘zz
D)= lNl N1 m (2.2.1)
where N,, n, and o,; denote the population size, the sample size and the
population variance of the ¢-th stratum, respectively. Because of the
proportionate sampling, neglecting the finite population correction,
(2.2.1) becomes

D) :g f‘. N, os;. (2.2.2)

If a linear regression z=d'y+6’ holds between X and Y, we may put
approximately with a constant «

o =ade,, (2.2.8)
therefore we may put also .
0‘1:2 =a? d,-?, . i (2.2.4)
Let Y, o and Y be the population mean in the i-th stratum, the
population variance and the population mean, respectxvely, and y; the
cutting points of these strata. That is,

o= [ - Trdow)

Y = [Tydow) R (2.2.5)

Y= [ vdr @@~ 0w

Yi—-1
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From (2.2.8), (2.2.4) and the relation

No=3 Noq+3 N(Y.—Y) (2.2.6)
follows
2 2 —_— —
D@ = 5N o= N N G- 5 N(Fe- Ty
_ No? ) Ve Y2
=SNG+ NY-SINTH . (2.2.7)
Hence, to minimize D*x) is to maximize
R — Y, 2
F=5NT=N3( [Tviow) /(ewr-own), @28
Yi-1
where y,=— 0, Y=+ . When the number of these strata is R, we
have from d—f=0
Yy, o
y{=ﬂ_1_a_+2_Y.+_1, i=1,2, ..., R—1. (2.2.9)

When the number of these strata increases, D’(xj decreases, as can easily
be seen from the relation

Nos*> N6} + N3 (N=N,+N,)
The positions of cutting points y, are obtained by means of successive
approximation, but the relative positions are as follows. From (2.2.9)
we have

fy‘de fymy do

. Yg—1 Y
2= 0= 0 T P~ 0w
and by the mean value theorem
@ —Y-) A=) =11 —¥)6 ) (2.2.10)
where 0<f<1, 0<#<1, or if we can assume the existence of ¢,
we have approximately

_ D' (Y;_y) — _ ¢ "(y;) ] A
U= g 005 = w(1 z(p——,(y;,)) @2.11)

where ¥,_,<¥.* <y, <¥Y¥<¥.... If the variation of the density function
@'(y) is assumed to be small, we have

Yi—Ya1=Ys1— Y,
that is, equal intervals are approximately optimum for our purpose.
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2.3 Optimum stratification by means of two controls

Let us estimate the total value Z with which two controls X and
Y are highly correlated. As in section 2.2, we adopt proportional alloca-
tion and we have

N & R
D*@)="Y S N2 . (2.3.1)
n i=1
Now assume the existence of a linear regression z=dz+8Yy+y' and

let p.y be the correlation coefficient between X and Y in the 4-th
stratum. Then we get

ai=d%0+ %+ 2a8piy01.01y (2.8.2)
where
Nai=3 Nioi+3] N(X,— X)*
Noj=3) Nioiy+ SIN(Y, - Y l (2.3.3)
2 Nepiayiary=2] NX.Y.+Npnouo,—NXY J
Considering (2.8.2) and (2.8.8), we have from (2.8.1)
D“’(z):% (@(Not+ NX2~ SN.X2) + B(Noi+ NV~ 5 N,T9)
+2a8(Npnossy— NX Y+g} NX.Y) (2.3.4)
In order to minimize this D*(z) with fixed R we have only to maximize
f=a'3) N,J?ﬂﬁ%;; N,Yf——2a,ez€} NZXY, (2.8.5)

Let @(x) and ?(y) be the absolutely continuous distribution functions
of X and Y, respectively. From i:o, i=0 it can be seen that

o, Y,
cutting points x; and y, satisfy the following relations
p— A XE=Xl) ' (2.3.6)
Y 2 X~ X ) —B(Y— Y. ) ¢
. Ve Voo
Y= B(Yt "Yt+1) (2.3.7)

28— V) — (X —Xi10)]
Eliminating a and 8 from these equations, we have

— Yt + :Yt+1(x‘__ th + XH) (2.3.8)

Y= —
X+ Xy 2
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or —_— ' o o . ;
X+ X Y.+ Y.
g=— T ey Lirt 2.3.9)
S AR Y< 2 ) | (
From (2.8.8) or (2.8.9) we can see that boundary points (z;, %) lie on

the straight line which passes through the points (%, O) and

(0,& }%E*—‘—),' respectively, as in section 2.2. Therefore, each stratum
is a étiip bounded by these straight lines.

2.4 Case when we adopt Neyman’s method of allocation

In the above mentioned allocation we adopted the method of pro-
portional allocation, but in this section we adopt Neyman’s method of
allocation. In this case the variance of the estimated total value x
under the stratification by control Y is

DY) =1 L (Vo) | 2.4.1)

As in section 2.2, we assume the existence of a linear regressmn between
X and Y. Then

D¥(x) =~ (Z M ow) (2.4.2)
and we can find cutting points y, Whlch minimize - -

F=S Naw=N 5/ 0a~ow ["u-Tdo @43

LY

From -31~—0 we get y, satisfying the relation '

Y. ' )
ai,,{1+(yfm )} "“‘”{H(%mf::l)} (2.4.4)

Whlch\ have been got by Dalenius, [2] from another point of view.
By the mean value theorem  (2.4.4) becomes

O —6) (¥~ x)(1+(~~—~~ )) (9"'*9')(y‘+1 yi)(1+(9,+_,_6,>2>

0[’
, (2.4.5)
where 0<6, ¢, 6", '0”'<1 If we can assume the variation of ¢’(y) is
small in each stratum, we have

Yi—Y1=Y 1Y



A STUDY OF THE STRATIFIED RANDOM SAMPLING 9

which means that the intervals of the strata are nearly of equal ‘size.
When the intervals of the strata become smaller, we can easily prove
1

that 4, ¢’ —->E, and 6"—0, ¢""—¢'—>1/3/6, therefore we obtain intervals
of equal size as before.
2.5 General cases

Let us estimate the total value X as in the previous section. Select
Y as the control of the stratification and we have

2 2
D)= SIN} % =a* STN; 2
(3

n,
= N2 z_fp(yz);¢(yt—1) f"‘ (y— E)2d¢ (2.5.1)
‘ C Ty
In order to obtain y, which minimize this D), we get from 05 2_—.0
t
%2 (o1, + (@~ Yt)z):_M“ (o141 + (@ — ?H ) (2.5.2)
(] T+1

From this equation we can calculate y, by means of successive ap-
proximation.

3 Influence of the stratification to the estimate

In the ordinary sampling survey we are obliged to take only a few
controls, for we are ignorant of the controls or of complicated procedures.
In such cases we perform stratification at first by one control B, and
after we have got data, we stratify anew by another control A. But
owing to the latter stratification we have a biased estimate.

For example, consider the case when we stratify the schools by
the number of pupils in the school survey where we want to estimate
certain parameters in the groups which are stratified by the number
of classes.

In this case, suppose we want to estimate the population mean in
regard to a characteristic X. At first we stratify the population by
control B and take samples by the proportionate sampling. Then we
stratify these samples anew by control A. Hence the formulas of
double sampling can be used. Sample mean Z, which is an estimate

of the population mean X, is
za=1 555, (8.1)
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where j denotes the j-th stratum owing to control A, ¢ denotes the
i-th stratum owing to control B and » is the sample size. In this case
7 is of course an unbiased estimate of the population mean, that is,

— of1 [ Q. S | ¥
E@=E(L3Saa)=1 S M SiX,= -0 Xu=X (32
nT % n T N, &1 NT%
and the variance of 7 is
D@="-13P,X Xy BENCE)
n n s

where P,=N,/N, which was mentioned by the author in [3].
The estimated mean in each stratum in regard to control B is
unbiased, that is, when

fvt———E Eklwm———E Lo (3.4)

n3
we have

E@) =X (3.5)
But the estimated mean

SI

=1S0,= LS, | (3.6)
n( njik

in each new stratum owing to control A is biased.
In general, for two random variables X and Y, it holds

X_EX) XEX)- YE(X) R
Y~ E(Y) + ETY) + 3.7
where R denotes the error term. We have first
E P”i.v'P"*t.r P n; ! Yy
(2 2 xt./lc) 2 Ny % i) a5 Loy z./l nﬁ! Ty 1. .n‘j’" E ‘; Xjk
=S x _"x
_2 ¢ X NXJ _ (8.8)

where P,;= N,/N, and the summation runs over all combinations
\(n”- . 'n”n) which SatiSfy Ny;+ - +niju=n¢ .
In a similar manner we have

E(nj)zl%Nj (8.9)

Hence from (8.7), (3.8) and (3 9) we have in the sense of the first
approximation
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EG)— E (ZZ Tyse) X, _ % '
)= R 4 (3.10)

E(n,.) N;
and
EX) By_ 2 EXDAY)
E(R)—.Ea(y) (E(Y?)—E¥Y))= e (3.11)
Similarly, we have
D)= i)~ B =" % 32 30 (312)
therefore, in our case, from (3.11)
: N X, Ni\_nHf1 ’
ER) = Nf(l b3 1:7.)_0(;) (3.13)

J

Hence (8.10) becomes
E(E,-)=fj+0(%) (3.14)

As for the variance of z;, we have in general

E(x-EXDy
DZ(J%).:: ( Ef(fg) ) (3.15)

If we can assume that the correlation coefficient between z; and #;
is 0 (this assumption is moderate when the correlation coefficient is
positive), we have '

Dz@j)=_2 MJ O'tj EM;o(l lv_t_j)(}gz_*_xz dt?‘) (3'16)
My nN : 7]

Further, we must increase the sample size in order to get ap-
proximately unbiased estimate when we adopt a new stratification after
the sampling procedure.

4 Practical systematic sampling

Systematic sampling method which has been introduced by Madow,
W.G. and Madow, L. H. [4] is a very convenient procedure for many
practical sampling surveys. In our country we ordinarily use this
procedure in large sample survey where the lists of the universe
elements are the voters’ list, the residents’ list and so on. But these
lists contain often non-universe elements in which we are not interested.
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We have treated in [5] the problem about this circumstance. To repeat
here what we have done in [5!, they are as follows:

1. For samples of size » by systematic sampling from the population
of size N==kn, for instance N=kn—r, 0<r<k, n>50, we have
obtained the expectation, the variance and the mean square error
of sample mean 7.

2. For the frame including non-universe elements and with size
N=kn, we have obtained the expectation of the variance of sample
mean in regard to the randomization of the universe.

3. To the case when we should take a sample of size exactly n, and

. when non-universe elements enter the sample obtained, we have got
a better estimate Z by substituting suitable universe elements for
the non-universe elements.

Now we want to prove a more general theorem than that in [5]..
THEOREM Consider the things of two sorts, the numbers of which
are Np and Nq, respectively, and divide these things into k sets of equal
size. Put
N=Np+ Ng (4.1)
and
M=Njk 4.2)

If we denote by x, the number of things concerning p in the i-th set, we
have

E(@x)=Mp - (4.3)
and ‘
Dz(x,)=1‘{(4£—1\f1()j€rvg(gp—l) + Mp—(Mp): (4.4)
PROOF: If p, is the percentage of the elements of (p) in the i-th
set, we have a system of percentages p,, ..., »: with the probability
Np\( Ng\(Np—Mp,\(Nqg—Mg,\ __(Mp,\ (Mg,
_ (Mp,) (MQ1)< Mp, )( Mg, ) (Mpb) (qu)
Pl' {plt v ey pk}_" N N—M N—-2M M
() V3 ) 28™)-(30)
13
M
=N .
D
()

Then putting Mp,—=z,, we have
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EW=(—%—) S (z,) (1) ()= Mp 4.6
Np

where >V denotes the summation over all x, with the condition
X+ +@—1)+x;,+ - +2,=Np and also

: _ M(M—-1)Np(Np—1)

E —1)=" VO E : 4.7

{z:(z; )} N(N—1) 4.7)

hence we have
DHe)=E o) B (e = MDD Lot gy a9)

Equations (4.6) and (4.7) are also obtained by the approximation
formula of the (4.5) as follows.

If we can assume that p and p; are very small but Np and Mp, are
constant for large N and M, we are able to use the formula of Poisson
distribution, that is,

( 1o )pM"tp”"'¢~ e~ (Mp)™»:

Mp, (Mp,)!
and
NN\ v » . e~V (Np)~»
()"~
Therefore, we have approximately
. Np)! 1\
Pr(py ..., B~ ( 1 4.9
P S o) T (M) 1 (M) | <k) “.9
and
E(x,)=Mp, (4.10)
2
Ea@—D}=(X) Npip-1). (4.11)

Therefore, in the section 2 of [5] if N’ is the size of universe
elements, and N, is that of universe elements of the i-th column, we
have

E(N))=N'lk=N", (4.12)
VBN 3) o w
D¥N,/)= N N e
@) e EL
- (N—l g Tl N') (4.13)
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For the example of voters’ lists of 4-chome, Ikebukuro, which was
treated in the example of [5],

N'=2476=096 N

2 [/ 2580—60 2476—1 1 '
T 1—41.3)- 1 —0.000153 .
N7 ( 2580—1 60 ) 41.3 3

5 Method of the analysis in the stratified random sampling

In the stratified random sampling we always estimate the popula-
tion parameters from the weighted sample data which are got by means
of simple random sampling from each stratum, so that we shall have
often biased estimates of the population parameters. Nevertheless, we
can get the linear unbiased estimate of the population mean because
of the special construction of estimators. Often we want to estimate
other population parameters such as correlation coefficients, or to test
the hypothesis by means of the chi-square distribution. In such cases,
however, we must establish the analyzing formula for the stratified
random sampling.

If we have much information in every stratum, we need not the
formulation such as in what follows, but we have never much informa-
tion enough to make conclusions on the whole without using the precise
information in every stratum.

Now we divide the universe elements into R strata at random,
and denote the expectation in this randomization by the notation & and
distinguish it from the ordinary expectation E in the sampling field of
each stratum. Then we obtain a modified Tchebycheff’s inequality as
follows.

THEOREM (TCHEBYCHEFF’S INEQUALITY) Let X be a random variable
with mean E(X) and variance D¥X). Divide the universe elements into
R strata at random. We denote expeéctation and variance concerning the
latter randomization by & and §2, respectively. Then for any k >0 it
holds

Pr{| X—eE(X)| = bV D{X) + (EX)—EEX)]%} < % 6.1y
PROOF: By the relation »
X—eB(X)=X—E(X)+EX)—eE(X)

we can easily prove the theorem as the ordinary Tchebycheff’s inequality.
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If we can here put €E(X)=E(X), that is, E(X) is unrelated to
the stratification, we have the ordinary Tchebycheff’s inequality.
COROLLARY We have approximately from (5.1)

Pr (| X—cE(X)| = kVeDXX)+ S E(X)} < %2 (5.2)
or

Pr {| X—¢E(X) | = bVEDX) < 11 (5.3)
with .

DX =ED(X) + 2 E(X) (5.4)

: PROOF: Taking the expectation & in the root sign of (5.1) we have
(5.2). _
We use practically this method of approximation when estimating
‘variances.
For the sample mean Z in the stratified random sampling, we have
E®@) = ZN X=X

z-l
‘which is unrelated to the stratlﬁcatlon, so that
EE(x) = E(x) (5.5)
and we can use the ordinary Tchebycheff’s inequality.

If we wish to prove (5.5) directly, we may proceed as follows: in
the randomization in regard to the stratification we have

N!
: =k .
AT AT (say) (5.6)
‘ways of partition, hence ‘
1 . 1 XkN,_X _ 5
)= 2 Xa)= - 21y Koy e

where X=X, +X,+---+Xy, X, is a sum of X in the ¢-th stratum in
regard to these randomization. Therefore, we have

eE@)= e( SINK )= réMé(E)i%,éMf:f.

6 Chisquare test for goodness of fit

We have treated in [6] the chi-square test for goodness of fit,
and obtained the following result.
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We divide the universe of size N into R strata by certain controls,
the sizes of which are N,, N,, ..., N, respectively, and take samples of
size ny, Ny, ..., nz from these strata by the simple random sampling,
respectively. Put

N, the number of universe elements with the j-th category
of a certain characteristic in the ¢-th stratum

Ny, : the number of universe elements with the j-th category
of the characteristic

N, Nt the corresponding sample sizes.

Further, put
2__ 1 (2 Ni LCE. (;;))2 n (2 M ,ﬁi_j_)z

NS om =Rt M 6.1
N; Ny, N5 Ne;, " @b

Then, negleéting the finite population correction, we have

G

N,{(N,— N,
E 2 :_7_"_ [ %) 1 ij 6-2
I (6.2)
The variance of x? is represented by the equation (8) in [6].
As to the proportionate sampling we obtain
B =M—-3152- V5 (6.3)

© 5 NN,

If we can assume that the stratification into R strata is carried out
at random, that is, the stratification of N elements into classes of
size N;; (1=1,2, ..., R) is carried out at random, the expectation & of
x? with respect to this randomization is

EE(Xz)prop. = M—' 1 - ‘(M;I‘Z)T(IR;_'}) (6'4)

For the expectation & we apply the formulas with respect to
factorial moments in the R x M contingency table [7]

E(NP)= M;I(XQ‘()D
e@igNg)= NSNS gor iy, g
—NONSNG™ for i, =7 "
i
- MTE}%%?QN&'{?, for i3, jj’
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In the general case with the assumption N,=N/R we have

eE(xz):—;ﬂR—:i)gi (6.6)
EDA(X)prop. = 2(M — 1)+o(§f)+o(%) 6.7)

We can generally obtain an approximate test by a modified
Tchebycheff’s inequality mentioned in section 5

Pr {|X2—eE(x?)| = kVEDXx?) } skl 6.8)

As to the proportionate sampling we obtain
PEOC o, =X g~ EE O N} =0 )
Hence, assuming N,=N/R, we have
& *Dz(xz)prop- = 8D2(X2)prop- +3°E (Xz)prop- ~2(M -1)
and approximately

Pr{|x*—(M-1)| = kV2(M-1)} < (6.9)

1
k2
7 Chi-square test for 8 x¢ contingency table

In this section we treat the chi-square test for sx{¢ contingency
table from the same point of view as in the preceding section. As
before we divide the universe of size N into R strata whose sizes are
N, N, ..., Ny, respectively, and 5
take samples of %, ..., nx from Ni B, B,--- B;--- B, | Total
these strata by the simple random Ay Mpy Mgz Mar) - - - Mg Ns.
sampling, respectively. : Do : : :

~As for certain two charac- :
teristics A and B, let n,; be the Ay | Mgy Masree Mugyecc Mas | T
size of the sample with the i-th Total
category in regard to characteris-
tic A and the j-th category in regard to characteristic B in the k-th
stratum (¢=1,2,...,8; j=1,2,...,¢; k=1,2, ..., R). Especially for
the k-th stratum they are illustrated in the above table.

If we have information about the size N,; we can test, as usual,
whether two characteristics A and B are independent of each other by
means of the x2-test with (s—1)(¢(—1) degrees of freedom for each

A Mgy Mgz Mgty == it Nps-

Ng.y Npeg* o> Mg s Npeg Ny
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stratum and R(s—1)(t—1) degrees of freedom for the whole universe.
But, in this case the difference among strata is not considered. So, we
want to test the independence of A and B from the point of view of
weighted samples. Put

{ Clwame )X wz”n-j) }2

2 wknuJ £ £

P (4 x g Walts 7 1)
CINES (S i Y Wit s) -
! > Wil

where w,=N,/n,. In the proportionate sampling, which we consider in
this section especia]ly, we have

. {E 2 (2 Ngis) 1} 7.2)
xX'=n :
)i 3)
Using the relations with respect to factorial moment:
(Dpy D
EnP)= . Z’) (7.8)
(l+m, ) ,, (m
E(ni§z>n£;;))=ﬁ¢_+:%ii, for i=4, j &7
n
nPnson g™ c e e
=‘—7;c,;;,4—, for i x4, j=J' (7.4)
@y M) gy By c g e s
= n.. nlf;af‘”'..: n.; , for z=\=""r J#]’
we have
= Mg M ; (g — 1) (15— 1) g} Mops- M5 M s- Mo -5
: -1) P NNy
E<x2>=”{22 Tl +33 e
i d DM DM ; i PH IOI
k k k k
2 nu. nk.j
+BN —1} 7.5
T3 %}n,,. ;nk.,- @5

If we divide the universe elements into R strata at random, we’
have in regard to this randomization

eB)="C=D0=D g M _,0(1) .6)
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Hence only for R=1 we have

EE(xd)= nfl (s—1)(t—1) (7.7)
If we can assume N,=N/E (k=1,2, ..., R), we have
SE(x?)=-"_(s—1)t—1) (7.8)
n—R

Next, let us consider the variance of x% After some complicated
calculation we have '

1 sy n"n M S

ninj
) (")
+- K- Ic.;)+422( k‘i (K;CJ +3 (‘,) + x kJ) K- 10k .5
Ny, T &7 Ny Ny Ny
0P )20 g9 02 "
Nz Nps. Ny 5 Npri N5 Npir. Ny .5
+3;2,( o + )( o -t
Fk . Ny Ny Ny
n, nk Ny Ny 'n,‘l,; Npr s Nprrs. Nyt 5
+ESISy (T S ey
rErEYyy Ny @ My Ny Noyrr
+ZEEZ Ngs. Mgy Mpre. Nogr o Mprrs. Mg 5 Mg v0g. Mgrr2.5 }
Teack! ekl TRRTT N Npr Mgyt Nprrr
1 { 1SN NP | D (0 My + M P M 5)
. ) k-5 Tk
+Emy AR
tIFJ nl.n..'n.jl & Ny Ny

D g 2
+ 7 Mg 'nk(;)n!c_; )+ N ( Mopi- Z’k.; +Vnk£- -5 )( 'Zk’ B + Ngra. Ny J')
Ny, Y 7, L My Ny ® Ny

2) 2 A
nkg n,, -J nk 7 nki. nk.J nk'jl 7&,,_./,‘. nk'._,'
ety Mt )
Ny .

N Mg Nprs. Ny 5 n n n Ny NP NP M
+222/ KiTok-G 00 k'¢< k” (’H'J’_i_ &' Tox - ’)+222( m k(: k-3
ey Ny Mg N Mg 7,

nk& nlc M j’)nk’ Ny +EEE( ’nm ’n,, A Npi. N5 )nk',;.ny.jl Nprrg. Nyt 50
;> Ny CE AN RS Ny, Ngr Nys

+251% M My My M Mg 57 + IS Pt Mg Mooy Mo M v Mot 57
k3 7, g ERE R > Ny Nyr

+

+ Z Z Npi Mg Voprs. Ngr 5 Mprri. Mot 50 Mprrrg . Nporr 5 }
kk! K %k NNy Ngrr Nyrrr

+lzzz 1 {2< RSN L m 25 (D Mar. + M. M)

B (70 (TN nf- n](;) nk(‘;)

k
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+ NP M. M. ) g( YRS nk, 4 Tt Torg )(nj g% 4 T M. ,)
1™ "y np” Ny

+22 'nk‘. ’n,,.j ny;,. nk'.j nk",:l n‘{ .J- nk",;l. n‘,".j
kExk/ % Ny Ny Ny Ny

WD Ngs. | P M, M.\ Mrs. N N.Y 1,57 Mg
+222( J i Xi- + kg TOki k& Ia]+222 nkzs)

7, 7, Ny LEY

+ nk._; N Mgt . )n,‘,‘f.ny.j +EZ§( n,,‘ n” + Nys. Ny 5 \nn'i' Npr. jWgrrir. Ngrr g
1, Ny = 1> n / Ny Ngrr

. n” s Npsr . ny n,,:, Nprsr. nk nH Npir. nm N jWprrgr Nprr .3
5353 e | gsisrss
CEY S 1P ¥ 2 Ny N

Rps. M. Mprs. Mgz 5 Mprrgr. Mpr 5 Mg r0gr. Mo 173
R
kxk Xk Tk M g Mg N
1 { 2 ( néz) nk(.’) (2) nLSSD + (2) n (’) nal nk 3
4 3
% nﬁ( ) nk(

D IIIPN

PxY JRT NNy NN

+ Nps. M- n/w.”k, + Pops. Wi Maesr . Mg 37
Ny <2} nk(Z)
( (2)721,(? + Ny, n,,,)( Ny, ? 7’&(2)_7' ‘ Nprzr. Vg . )
CE AN (A y, S Tigr
+222('ﬂ“/.nk j,m,‘ N3 + xiv. Mg g m.;.n,,,) Rprs. Ny .3
EXW 7,® 7P M

&

+22 nbi nk‘,nlgr‘ nkr j( nqur nkrl 4 + n,,,m nyr 37 )
kxk k7 Mg Npr . S (5) Nr

(2) 0y (D
Nii” Ny Mpgr. Nz Pai- Moe; Noisr. N jr \ Nprgr. Npr .50
+255( Tag ey i
Ny Ny Norr

+§2 ( nk&” (2) + i N5 ) Nirgr. Wigr .0 Wperrir. Wrr.gr -

L ZANIE A Ny T Nirr

+2 Mg M. Mogir, M. 7 Woprs. Wpr 3 Morar. Npr .
EYY 1P nSP
+4 M. Mo s Pir. Mg gr Wit Mgt 5 Moprrgr . Nrr 57
PEYEYd nk(ﬂ) nk’ nk”
Nig . N sNprg. Mper s Mprrgr Noprr. oo Mprorgr . Wgrrr .
+ TSIy Tttt M vy e T o) | —(nt B (1.9)
k*k'*l‘"*"(" nt nkl nkll nkln

It is so much complicated that we cannot use it practically. But
when N,=N/R, N,.=NJs and N ;=Njt, using the notation &* in section
5, we have

202\ — n ’ 1
e*D¥(x )—2n_R(s-1)(t—1)+o(_1;> (7.10)
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Hence we can apply the usual x? distribution of (s—1)(¢—1) degrees of
freedom only for this special case.

8 Correlation coefficient in the stratified random sampling

In this section we treat the correlation coefficient in the stratified
rondom sampling. Let N be the size of the universe, B the number
of strata, N, the size of the i-th stratum (¢=1,2, ..., R), n the total
sample size, and %, the sample size in the i-th stratum (:=1,2, ..., R).
When there are two characteristics X and Y with which we are concerned,
let f,x be the number of combinations of the characteristics (z;, ) in
the ¢-th stratum, and put

t"‘— Efij ?7£=L2fi.kyk )
i g=1 nt k=1
fij-: kE_lft,-k, fi-k: Z}fuk
; , ' 8.1)
n= Efq.= Efi-lc
_ _ 1& _
w:ﬁgMa’n =_2Myt J

In order to calculate the sample correlation coefficient r we -give the
weight w,=N,/n; to the sample of the i-th stratum and put

53 IR CI IO )
r= s eI
/L Ssufs@mary L DS fa—

LEMMA 1 Let f(X, Y, Z) be the function of three random wvariables
X, Y, and Z in a certain region @ and have the continuous derivatives up
to the second order in regard to X, Y and Z. Then under the assump-
tion that the higher order terms in Taylor’s expansions such as variances,
covariances and central moments are infinitesimal, we have

(8.2)

Ef(X, Y, Z)=f(EX), E(Y), E(Z)) (8.3)
D%, Y, 2= (5) D@0+ () Dy +(9 ) Dz
+2(3§) (df) cov (X, Y)+2<:J;) (d‘f) cov (Y, 2)
+2(. ;’é) (-d—f) cov (Z, X) (8.4)



22 . HIROJIRO AOYAMA

PROOF : Applying Taylor’s theorem to f(X, Y, Z) in a neighbour-
hood of the point (E(X), E(Y), E(Z)), we have

(X, Y, 2)=f(EX), E(Y), E(Z))+(X— E(X))( of )
+(¥-E@)(X) +@-E@) L) +R, (8.5)

where the suﬂix 0 denotes the value at the point (E(X), EXY), E(Z)y
and

- B=L[(20) x-a0r+ (2L) (- B+ (2F) @-moy

+2( afi?) (X—E(X)(Y— E(Y))+2( dZ)I(Y—E’(Y))(Z—E(Z))

+2(-20) (- E@)(x-BX)|

Taking the expectation of (8.5), we have
Ef(X, Y, Z)=f(E(X), E(Y), E(Z))+E(R,)
Here, we can neglect the second term of the right hand side, because
the higher order terms of the variances %, o%, s%, and convariances
oxy, Oyz, 6zx are infinitesimal compared with the first term.
On the other hand we get

DY(X, Y, 2)=Ef(X, Y, D)~ BX), KY), B@)*
= B{( 95). =B+ (55 (6~ By +(9 ) - B2y

+2X- BT -BO)(2) () +av-mp)2-B2) () (¥)

_ _ of\ (of
+2(2-E@) X~ EX) (L) (2F)+ k| |
where R, denotes the term of higher order. From this relation we
obtain

DX, Y, 2)=( 2L ) D)+ (22 ) Dy + (%) D¥2)
( ) (—‘i) cov (X, Y)+2(df) (if-) cov (Y, Z)

Y
257 (55) v e 0
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LEMMA 2 :Let f(X, 7, Z)=7§,=Y under the same conditions as in
Lemma 1. Then we have
E (V?{Y) VEg)Zz)a(Y) (8.6)
2( )= mo e imon “X”‘ZE?((Z%“D“Y”D“Z)
EE?) cov (X, Z)— gg)) cov (¥, >+2Efx§?m cov (X, )} 8.7)

PrROOF: Evident from lemma 1.
From lemma 2, neglecting the finite population correction, we have

—EM%(’LH**EN(X}Y —-XY)— —Z ,“u("')

M 1‘20(7')

E'(r)—-
2 #20(%)-*-2 (X X)Z E

,/zl‘imz(zwz]"i(n P = 0 )

—p+ O<n‘> | (8:8)

where u: denotes the &, k-th central moment in the ¢-th stratum and
p denotes the population correlation coefficient.
The variance in case R=2 is

4N? N7
N4

[ i {l( (oD — (1) + o)X X

Baoptor - Apn (T
+4 N}VJ‘,‘\LFW(I)(X Xz)) ——Z—(N_’z'(l-‘w(z) pai(2)) + =

Dr)=

4N?N;7
N4
AN, N; Y _ ¥ wi (1 N? 2

+ AN @) (B X )|+ L (0 o) — D)

AN N,
N3

l‘zo(z)(zx— x)z

41\271\71 ,uoz(l)(Y Yo)r+ S5 (1) (Y, — Yz)) '*( N (.“04(2) #x(2))

+ 45,\174]'\"?‘#02(2) (Y Yz)z 4NJ_\17§YL’403(2)(Y2 ¥ )>} {

o o0 (0= B+ a0 (s = o+ 24 (DX = X (Vo= o)
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2];:731\72 (I‘lz(l) (X X2)+y21(1)(Y Yz))} {M (Fzz(z) Flf(2))

+° N N (@) (Y, — Y2)2+I~‘02(2) (X~ X0 +2,(2) (X, — X) (Y, — 1)

2N1N2 (0@ B )+ @) (Fo T | = 20 L (R )
—pna)pzo(n) e (T FouaD)+ 8K~ D)D)
—pmaxfc:—zixn—Yz)—pn(z—faznﬁ%a A5 AR AMCY
+ Em= X))+ VA (F = B+ (K — DT~ Fpan(1)

+ 1(

— (X = X)(¥,— Vo) pn(2)— (X — X2

1).“30(2) + 3(X2 - z)l‘zl(z)

3N‘ N (& - XY To— T pae@)

+ (X Xz)z .“11(2)) +— N2 ((X-I X)I-‘u(z) + (Xl X)(Y Yz)l‘zn(z)))

—%{;ZI—I(JV‘ (/-’13(1) #11(1)i‘20(1))+ 2 (X X)Fos(1)+3(Y Y2)/‘12(1)

—(X—X)(T.- 172>p02<1>—pu<1><172 7)) +3J}’VN — X)(F— Tl L)

+ (= T+ N (o= P+ (Ko = XN T~ Fou1))

o (@~ pu<2>poz<2>>+N LB (X D@+ 3T Tpue®)
B RS ACER ATNORIC AR SUNCHRRALEG A 46 A AMNE
+ (T Tuu@)+ N (B T + Ko X )(Ta— T

i 1 v 2
g F {0 ) = D) — (s —~ o)D)

—2(X Do) M0 — IR (7= (1)~ 2T~ (1)

—2)21‘20(1) + (551 - fz)zl‘oz(l) + 4#;1(1)()71 - _Xz)( ?1 - ?2))

NN
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+ 0 (= B o) (Fim T0al0) |+ 2 1) pu )

B N}VIY L (X~ X uoe(2) — 2(X; — X)pusa(@) + (¥ — ) 2paan(2)

27— Fopua@) + LV (T T + (X~ X @)

+ @ E = XY= )+ DI (X = Xo@) + (T T a2
| +0m")  (8.9)
Especially in the proportionate sampling

D0 = = (T 0+ @)+ 2R (B B i)

NN, 3 bd ( 1 N, N,
@)+ +HNOE =X+ (At — e () + 22 i)

+ 200 (7, P oD + Ny @)+ 202 (4 N F,— T

+ {ﬂ i(_ﬂxl(1)+ 2 ui(2)+ 2N, ]\72 (X; X—;)(ﬁ - E)(Nzﬂu(l)

I‘l? Fu N N

+X, 2P11(2)) e M N2 (NP + ND)(X, — Xy (Y, —?2)2> } - {%::_;

_ 4 (—?’vnuama)+~nu<2>mo<2)+——%(X )

 Haapezo

X (Fi= TN ) 2RI N 7, e, 1) N R
N Nz

+ @ IR 4 20 (4 N NN N~ TN T - B )

- {jﬂm—,'—' ——4—*(ﬂ P1(Dpoe(1) + -A—rz‘ﬂu(z)l-‘oz(z)
Pupoz  Paphoz N N ’

+ I X=X (T~ B DTN b @) V) 4 M 77

NN | (@)

(Fum SEE)

NN?(N°+N“ NN N)(X,—X)(T,— Y)a)} {f":
20M02
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NlNz (X, — X (Napaoa(1)

2
onI»‘ozv<
+N1,.coz<2>>+N* (7, T Napino(1) + Nypino(2))

+ IR (N4 N~ T W= B )| 40 (8.10)

If we divide the universe elements into R strata at random, we
obtain

ED () prop. = s (I-ho 4 Hos l‘cu +4F22 dps _ Aps + 2p05 ) +0(n~%) (8.11)

75 ,um T Maifhoo  Miifboz  Meofoz

In case of arbitrary R(=3) the formula of D*r) is so much com-
plicated that we can not use it for the practical purpose. =~ But, under
certain conditions, we can show that &éD*7),.,. in this case is also equal
to (8 11). First, we will prove the following lemma.

LEMMA 8 Let f(m, m;) and g(m., m,) be the functions of the central
moments my, m; and my, m, respectively, which are constructed from
the sample of size m. Suppose that the following two conditions are
satisfied :

1) In some neighbourhood of the povnt m,=p,, Mm;=p; Mp=p, M= p
the function f and g are continuous and have continuous ﬁrst and
second derivatives with respect to these arguments.

2) For all possible values of x,, we have |f| < On® and |g|< Cn?, where
C and p are non-negative constants.

Denote by the suffix 0 the values at the point m=u, m;=p; or mkink,

m,=uw,. Then, the mean, the variance and the convariance of the random

variables f and g are given by

E(H)=fr+0(2) ' (8.12)
D - 2] o (] sz (), (20),

+0m7) (8.13)
cov (f, g)=cov (m,, mk)(daﬁ,> (dmk) +cov (my, m,)( ( om, )

+cov (my, m,,)( ;Z ) ( dm,,>o +cov (m; mz)( d;ﬂ,) )

+0(n") o (8.14)
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PrROOF (8.12) and (8.13) are proved in Cramér [8]. (8.14) is
proved in the same manner, using the same notation as Cramér’s.
Denote by Z the set of all points in R, such that all inequalities
Imi—p | <€, Imy—p;l<e, |m—ml<e and |m—pu| < ¢ hold and by Z*
the complementary set of Z. We have then

PZy< 2 pzy>1-44

‘hc % 7 e

where A is a constant independent of » and €, and x is a positive integer.
If ¢ is sufficiently small, we have by condition 1) for any point in set Z

S(mi, m J) f(m, M,)+(mz—m)( )+( rm)( df,) + R,

am; /o
and N
g (muy M) =9 (pr, )+ (M — m)( m) +(m ,_,,,)< m,) +R,
where | ’
%f—( ) (m;— Fi)2+2< d::gm ) (my— ps)(m; ——,.aJ)+( ) (m; m)z]
R,= ;[( dmk) (m m)e.+2(%°£2—gﬁ)1(mk-m)(m,-—p,)+(d nf? )1(%_ m)z]

and the suffix 1 denotes the value at some intermediate point between
(w4 p;) and (my, m;) or between (m, u) and (my, m;).
From (8.12) and the similar formula for g, we have

cov (f, 0)=E(fg—fom) = [ (fo~fg) dP+ [ (f9—fuge)dP

and o
[ G-t aP| < 20 A —oqwr-s,

Taking x» such that x>2p+—23—, v§re obtain

cov (£, 9)= [ (fg~fig) dP+0 (") (8.15)

while

J (fo=stayap=(0) g, [ mi~pyaP+(2L) o J =i
+ (g o f (e dP+(—~-) 1oJ me—wy ap.
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(my — p)(my— ) AP
(m,— p)(my — ) AP .

(m;— p) (M — ) AP

[ (my— ) — ) AP
+ [ By P, | - (8.16)

where R, consists from R, R, (m—u,), (m;— p;), (Mp—pe) and (m;— ;).
For example .

S =) Ry P < L MB O — ) oma 2B o — )~ )
+ E(m, — p)(m, — )}

where M denotes a certain constant. defined from the condition 1.) By
Schwarz’ inequality we have

B (i~ w)(me— )| < [ [ (m— )2 aP- [ (m— ot aP |}
Rn Rn .

=0(n~")
| (= ) s p) (=) | < | [ (me—py? dP
Rn
x [ ome— ) P[] [ (mu— 2 aP)* =0(n-)
Therefore o ‘ o
[ on—p) B, dP < O(=)
and i

f R, dP < O(n-").
zZ

Besides this relation it holds

f (14— ) dP=E(m,— ) + O (") =0 (n~) -

[ = o(m;— ) dP=cov (m., m) + O (1=,
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From (8.15) and (8.16) we have (8.14). This completes the proof
of the lemma.

This lemma holds also for the case of several arguments In the
case of an arbitrary number of strata, we have D%*r) in a similar
manner, but for the expectation of D*r) we obtain only the terms
except the ones containing (Z—f.,-), (T’i—-l_fi—) or its power neglecting
the infinitesimal higher order terms. Using lemma 8 where m,=2,
ete., we have

DZLE_]l ]JV\; 85+ Z N, (:v .fv)z]

+1, (terms that contain Z—)_(, or its powers)+O0(n,~**) (8.17)
R N R _ o ~ R 2 o)
D Sy st 30 @20 = 31T G~ i)

- N
+1I, (terms that contain X,— X, and ¥,— ¥, or their powers)
+0 (") (8.18)
R R
cov[ 31 esi+ 3 Be@m—ar, S Nonss,+ SV @-2w-9)]
_i}w o (p31(8) — p1a(D)pao(®)) + I, (terms that contain X,— )?J and
Y,— Y or their powers)+ O (n,~%) (8.19)
R
cov Lgl N, 85+ Z‘ N (x —z), Z} M"Szy‘*’ > Ni @— @)2]
R
; (/122(@) pao(D)pox(2)) +1, (terms that contain X;—X; and
Y,—7Y; or their powers)+ O (n,~*2) (8.20)
hence
D)= L[ 5 =)+ L 51 NG it
I‘zol-‘oz 4/‘20 i=i N 2 i ;i1 N°n, "
3] D= ) = 2533 B ) )
R
Z:: E N2 (st(@) I~"11(7J)I‘oz(7'))+ 2/::;;‘02; N2 (l‘zz("') Hao(B)pto2(2))

+1 (terms that contain X,—X; and Y,— Y; or their powers)
" +0(n") (8.21)
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In the ease of the proportionate sampling, we have

D0, =2 [ T i)~ s (@))+—Zz—]\\rr‘-(#o4(i)*#o§(i)) |

2
Hax *

A S i) = ) 2 3 i) = i)

Pt Iful‘zo
A ) = ) F—2— 1V (a(6) — prao B paenE))
Hi1foz ¢ N Hoofloz ¢ N

+Il+0(n—3/2)
____82 ’:#40 + I~‘u4 4#2° 4ps, _ dpys + 2p9y

dn Lps  po; Bl Pups l‘ul-‘oz l»‘zol-‘oz
1 N, .
L Rwin- L fwo- Al
+ A N i+ E—Aipua)yoz(i)
Haifhog ? N Mi1fzo * N
2 N, . . o . '
- 20 Han(8) poe(?) | + 1, + O (™) (8.22y
HaoMoz ¢ N

so that taking expectation & in regard to the stratlﬁcatlon we obtain
ED(P)prop. = L ( ﬁ‘—EH- ,“04 + dpse  Apay  Apy + 2/‘22)
dn \ pap ol T Mufer  HuMiz Heofhoz
+0(n~"?) - o (8.23)
because, in the same manner as taking the ordinary expectation of lemma
3, we have

Epan(t) = pa+O(N;™Y)
Epsi(B)=pi +O (V™)
E 11 (D) prao(2) = prysptae + O (N, ™Y)
5#20(7:)#02(":) = piaopoz + O (‘NJ—I)
- &(Xi— XY pnal ) =O (™)
From this result we can estimate the correlation coefficient in some
cases of the stratified proportmnate samplings with. the better accuracy
than the simple random sampling.’

9 Application to the sampling inspection

Wé need often the method of sampling inspectibn‘ for the sub-
sampling. Let the size of a lot be N and assume that the lot is parti-
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tioned into M sublots of equal size. The plan of the sampling inspec-
tion consists of how many sublots we should sample and how many
units we should sample from these sublots.
Let P be the total fraction defective, P, that of the i-th sublot,
N, the number of defectives of the ¢-th sublot, m the size of samples
of these sublots and n the size of sample units from each sublot.
An optimum plan under the condition of the constant cost is obtained
in the following way. First, set
¢;: the cost of the inspection per sublot
c;: the loss by the interchange of defectives
¢;: the cost of the inspection per unit
C: total cost

Then the total cost on the average is
C=(c;+cnP+cn)ym
and the variance of the estimated fraction defectives p is
N

i )
M—m af M o2 ol . o
D(p)= L T B oA R T
®) M—-1 m * N _;mn m +mn ©.1)
M
‘where ¢} is the between-variance and o.; is the within-variance :
M
si= 1 SIP(1-P) 92
and o
oi=L SP,—Py 9.9)
M =
‘Therefore, putting f=D*p)+2{(c,+cnP+en)ym—C} and o/=ks), we
have from _i‘i=0, .99_’.:0
am an
n=y3/___ 61 9.4)
k(c,P+c3)
and
c____ (9.5)

m:‘_q__Af, .
- et (e.Pte)n
which give an optimum plan.
In order to write the OC-function it is not sufficient to use the
equation (9.1). Because we don’t know the distribution of the estimated
fractives p. We shall consider this problem below.
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From (9.1), (9.2) and (9.3) we have

M . M
D)= LS p-py e SIS USPA-P)  0.6)

If the partition into sublot is performed at random, and if we take
the expectation & of D*p) as in section 4, we get

o _}W_—m 1 1 g P P)e N—Mn 1 E
eD¥(p)= =1 ¥ (Z( A +" NeMm (EP(I Py)
When we put I=3}(P,—P), I=31P(1-P), this can be written as
_M-m 1 N—Mn
ST M-e(I)-& N MG(II) 9.7)
Now, considering P;=MN,/N and ZPJ:MP, we obtain
M2 re
I =§‘. P;—MP= J—VEEJ‘}J\/;—MP2 (9.8)
. M2 0
I=3P—3 P}=MP— ]—\ﬁENj 9.9)

so that we can calculate the expectation of >IN/.
J

Using the result of section 4, we have

e(ZNf)_‘yv J;INPUX;’ D NP (9.10)
Therefore, we have
N-M_ P(NP-1) , PM*
e(1)=M- _ MP* .
(D= =2 2o > 9.11)
ean=pp— - NP NP-D_F o 9.12)

and from (9.7)

_ M P(NP—
N~Mn 1 N—M P(NP—1) PM
P - _ .
Y N-M { N—1 N N j 013

Further, when we can assume that the distribution of p is approxi-
mately normal with mean P and variance &D(p), we can write the
OC-curve as usual.
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Example. Consider the case when
N=120000, M=500, P=0.04

01=135, 02=8.5, 63=0.05 (yen)
k=0.03,
In this case we have from (9.4) and (9.5)
n=102, C=179.88m
D
C
020 2
0020 °2=O.030’,2:— 1
0.018 | C 4 8000
D(P
0.0161 < 7000
0.014} 4 6000
0.012F 4 5000
0.010} 44000
0.008 |- - 3000
0.006 ' 42000
0.004} <1000
0 5 0 15 20 25 30 3% 40 25 50 =m

If we take the following plan:
n=100
. m= 10
then we obtain from (9.18)
ED*(p)=0.000038086 for the case P=0.04

Let the lot tolerance percentage defective (L.T.P.D.) p, be 0.08,
the number of the defectives which are tolerable equal to 80.
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| P eD2(p) ~/eD(p)
0.01 | .000 009 818 0031
0.02 | .000 019 438 0044
0.03 | .000 028 861 0054
0.04 | .000 038 086 0062
0.05 | .000 047 114 -0069
0.06 | .000 055 944 -0075 0.10 005
0.07 | .000 064 576 -0080 \
0.08 | .000 073 012 0085 Ny
0.09 | .000 081 248 -0090
0.10 | .000 089 288 .0094 004 P, 008

Then the maximum acceptable number of defective is n,=mnp,
=1000p, where p, satisfies either

OC-curves
L(P)
1

1.0 <<

08

05

04r

03t

0.1f

O o001 002 003 004 005 006 oo7 008 009 Olo —>P
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0.08—p, —1.2816 9.14
VeD¥p) for P=0.08 ©-19)

for the consumer’s risk 8=0.10, or

p,—0.04 —1.6449 9.15
V' eD¥p) for P=0.04 (9.15)

for the producer’s risk a=0.05.

Using the above table we obtain approximately from (9.14) p,=0.0691
or from (9.15) p,=0.0502. If we attach importance to the consumer’s
risk, we put n,=69 so that the producer’s risk is almost 0, as is seen
from the fact that

0.0691—0.04 1 -£

——= 7 —4.69, - 1 dt=0.

0.0062 Verd  ©
If we attach importance to the .producer’s risk, we put 7,=50 so that
the consumer’s risk is almost 0, as is seen from the fact that
0.08—0.0502 1 s 2
O —8.505, ——— 2 dt=0.
00085 o0 gy fw ¢

Therefore we have average OC-curves for these plans. In this graph
we show also the OC-curves for the maximum variance £D*p)+ 33D%(p)
as it is practically used in place of the average variance £D*(p).

\
10 Conclusion from our results

In the preceding sections we discussed about methods of stratification
and analysis, where we have found that the proportionate stratified
sampling plays the principal role. But we cannot often analyse our
data for the arbitrary stratified sampling because of a complicated
ana]yping procedure. Therefore, except for estimation of the mean or
the total value, we must use the proportionate stratified sampling for
every purpose, which satisfies the necessary conditions for analysis and
takes samples of large size. In this case the sample size is determined
as follows.

Let R be the number of strata, ¢,(1 <¢ < R) the cost of survey
per unit, and ¢, the cost of stratification. Then the total cost C(n) is

C(n)=co+§:cm, : (10.1)

But in our survey where we use the proportional allocation, we
have .
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Cn)=c,+ 2 écN
%0 "N“_‘ 4LV

where N denotes total size of our universe and N, the size of the :-th
stratum.

Suppose we want to estimate K different parameters Z;(1 <j < K)
and the loss function I/(z;) is equal to w;z;—Z;* with the weight w;.
Then the expectation of I(z;) becomes w;D%z;) so that the expectation
of the loss function L(n) is in regard to estimation

21 w;D%(2;) ’ (10.8)

Hence in case when L(n) can practically considered to be Ew DA(2;),
J=1
the sample size n which minimizes the total loss function

f(n)=L(n)+C(n) (10.4)
can be found from the following equation
& 5, dD¥) 1
e T (10-5
4;

In many cases, however, we have D%(z;)=--. where A; is the funec-
n

tion of parameters not including n, then we can get from (10.5)

/ N Ew A;
B i (10.6)

2 eV,

i=1
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ERRATA _ }
These Annals, Vol. II, No. 1, 1950. P. 18 insert after last line of
section 2

“In these cases we have not the maximum value but ohly the
stationary value just as the minimax solution. If we want to obtain
the maximum value, we must estimate the rational rate %, and %,

from experiences in the past time. This fact holds also in the follow-
ing sections.”

Vol. V, No. 1, 1953

Page line

27, 9, read M— 1—(—]”“—1127@‘_1) instead of the right hand side of (6)

27, 12, insert under the assumption after ‘‘we have”’
=N/R

27, 14, read 2(M-1) +O(1—::7—) + O(%) instead of the right hand side of (8)

27, last, read (strike off the table)
28, 5-6, read (strike off the sentence ‘‘under the condition M=R(R—1)

and R+1"

Vol. VI, No. 1, 1954
Page line M o
13, 12, read ( Mp, )p””:q"‘% instead of ( Mp, )p""”cp”"t
14, 3, read 0.96 N instead of 096 N
15, 6, read ...kl/e"‘Dz(X)}é%2 instead of ...kVe:*D’(X)g%-2
15, 28, read X, instead of X,
24, 7, read —py(2)pn(2)... instead of  — gy (1)us(2). ..

M y'dh 3 N, 12Nz Y
24, 10, read (X —-X)... instead of ¥ X, -X)...
25, 9, read 2N‘N2(Y —T¥)t---  instead of 2%N*(Y b AEE

+N]1\/_1:72(N,’+M’)-~- instead of +N&1§(M’+M“)~-

28,2 from the bottom, +O(n~*?) instead of +O(™*")

80, 11, read —-m _ 4Pu 4 ... ingtead of — 2m _ 4w |
MM a1 Moz MMz M11fe2
36, 3 from the bottom, the coming issue instead of this issue



Page line
54, 6, read [20], Lemma
68, 28, read e"*®

97,. 6, read (X, Y)) has
98, 2, read Iimignﬁ

" n

instead of
instead of
instead of

instead of

[20, Lemma
el’™®
(X}x YJ has

i D (S,,_.)
hf‘n 21 5

n



