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1. Let {X({,w); —oo<i< o, w€L} be a measurable strictly stationary
ergodic stochastic process, defined on a probability space 2, with E{| X (0)[*} < o,
and assume that X(f) is continuous in mean. Then the covariance function
(1) Rw=E{X(t+w)X(®)}
does not depend on ¢t Foliowing Doob [1], we shall not set the condition
that E{X(f)} is independent of ¢ Therefore, R(u) i8 not in general a true
covariance. It is well known that R(u) is continuous in u, and can be expressed
in the form

(2) Ra=|" o= aFa),

where F is monotone non-decreasing, bounded and is called thelspectral distribu-
tion function of the process. From our hypothesis it is proved that

T _
(3) R(w)=lim 1S X (41, 0) X(E o) dt
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for all u(— o <u< o) and for almost all . (Wiener [1], 10.)

Let f(f) be a sample function of a process which satisfies the above hypo-
theses, and suppose that the spectral distribution function F is known and that
f(t) satisfies the condition (3), that is,

r
-7

(3) R(u)=£i:1;é%; f Fe+w @, — —oo<u< .

Under these circumstances, Wiener [2] studied the problem to predict the future
value of f,f(t+a), at a period @ units of time later than ¢, knowing the past
and present values {f(t—7); O =7 <co} up to the time & Assuming f(¢)
to be bounded, he investigated the predicting operator with the expression

(4) |7 re=—mare),

where K (7) is of finite total variation. Wiener considered the predicting operator
(4) to be optimum, if the mean square error

(5) tim L (7 17+ a) - [ r0-nar@par
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is minimum, from the point of view of the theory of least squares.

However, even if f(¢) is supposed to be bounded and continuous, it is not
clear whether the limit (5) exists, or whether the limit (5), even if it exists,
attains the minimum value, when K(r) runs over all functions of finite total
variation. In this paper we want to give a way of removing these vague points.
For this purpose we formulate the problem as follows.

Put
(6) 5= inf {lim 1‘r 1 ft+a)— Da f(t-—--r)l’dt}m

_n,'cJ.aJ r-»ewZ?T -7 “ j=1 ) )
where inf means the greatest lower bound of the set of the indicated limits,
when n runs over all positive integers, T, T4, -+-, T assume all non-negative
real numbers, and a,, @;, *+*, @, assume all complex numbers. For a given
£>0, we shall aim at finding n, 7; and @, (j=1,2, - -+, n) which satisfy
(7) {nm,kr Lf(t+a)— z"',a,f(t—-r,)rdz}'”s S+e,

T 2T FeT
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2. Let L(f) be the linear space generated by the set of shifted f(t)s,

{f(t+7)}, where = is a parameter which runs over all real numbers. Then
any element of L(f) can be written in the form

o= aft+m),

where n is a positive integer, T, +--, T, are real numbers, and @, ---, @, are
complex numbers. Now, we introduce an inner product in the linear space
L(f) as follows: :

(po=lim 1 [" p0a®d  paeLn).

The existence of the limit follows from (3’). Then, define the norm of any
element p of L(f) by
“p”=(P’P)V2’
and identify p and g(€L(f)), if and only it [|[p—ql|=0. The space L(f),
thus, becomes a linear normed space.
Let Ly(F) be the L,-space with respect to F-measure. In L,(F'), the inner
product and the norm are defined as follows:

(g, 0e=|"_ g 1@ dF@), g heL(P),

lgllF= {(g’ Nr} W’
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and two elements g and h (g, h € L(F)) are identified, if and only if ||g—%|l»=0.
Further, let L(F) be the linear subspace of L. (F) generated by the set {e""},
where T is a parameter which runs over all real numbers. From (3’) and (2),
we have :
(ft+7), fE+7))=R(r—7")=(6", "),
and in general :

(,i.l a; f(t+Ty), ,,z:.; b f(¢+ ﬂk)) - (.,i-_': a6, ki-l b ef %”)"' |

This means that the two linear normed spaces L(f) and . L(F) are isomorphic
by the correspondense

(8) ga,f(t+7;)<——+gaje"l”.

Let L(f; 0) (L(F; 0)) be the linear subspace generated by the set { Jft—7);
0=<r<o} ({¢®; 0 <7< co}), and denote the closure of L(F; 0) by L,(F; 0).
Our problem stated in 1 is to find p which satisfies
9) If¢+a)—pO)ll <8+,

p€L(f;0),
where 8 is defined by (6) and e is a given positive number.
From (6) we have

(10) 8= eiﬁi o)llf(t+a)~p(t) ] =geig(1£; 0)ll &= —g(z) |}r
=gexgc5i113; o)II ¢c—g()llw = || e —h@)|lr  (say).

According to the theory of Hilbert space, the element h which minimizes
{] ¢**—h(x) || under the condition that '
(1) h e L,(F; 0),

is given by the projection of ¢ to the closed linear subspace L.F; 0). For
h(z) to be such a element, it is necessary and sufficient that ¢“*—h(z) is
orthogonal to ¢™* for all +=0:

5: (o~ h(z)) " dF(@)=0, 7=0,

-

ie.,
12) r o h(z) dF(x):r FTd=qR(z), T>=0.
This equation has been derived in T. Kawata [1]. The function h(z) which

gatisfies (11) and (12) exists and is uniquely determined except for the equi-
valence with respect to F-measure.
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Since L(F; 0) is dense in L (F; 0), for any given ¢ >0, we may take g

such that
Hg—=Lllr=<ce, g€ L(F;0).

Let us denote by p the element of L(f; 0) corresponding to g by the corres-
pondence (8). Then, we have
IfCE+a)—p@) Il = [l —g(2) llr < || = —h(@) |lr + || A(2)—g(2) ll»
: <d&+e. '

Thus, p satisfies (9). If

o= Hareros,
then

()= 2 af(t—r))
and n, 75, a)(j=1,2, « -+, n) satisfy (7).

3. We now wish to solve equation (12) under condition (11), assuining,.
following Wiener [2], that the spectral distribution function F(z) is absolutely

continuous and that

> |log F'(z)|
S_a 1+ da< oo,

According to the well-known Paley-Wiener theorem (Paley and Wiener [1],
Theorem XII, p. 16), there exists a function P(z) of L, (— e, ) such that

(14) : | #(z) [*=F"(x)
and the Fourier transform in L, — oo, o0) of P(z),

=13 1 ™ txy g ..
1s) Y) =lim. 1" 9@ ¢z,
vanishes for negative values of 7, i.e.,

(16) | ¥y =0,  y<o,
except at a set of points of zero measure. In this case, (12) is rewritten as

a3

an r () () O() () dz= r P W) dr, T >0.
Let us denote the Fourier transform in L,(— oo, o) of I(z)¥(z) by
@18) &(y)=Lim. V;;s W@)B() e dz.

Then we have

h(x)w(x)=1.i.m.#r &(y) e dy
- V2 J-4 ’
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and therefore, noticing that !P(:v) =0 almost everywhere because of (13),

(19) h(z)= 7 ( ) Li Adm. l/;__f AE(y) e~ dy,

Thus, h(z) can be expressed by E(y) Concerning this &(y), we can prove that
{20) &y)=0, y<0,

except at a set of points of zero measure. From (11) it follows that there exists
a sequence {h,} of elements belonging to L(F; 0), such that

th | h(z) —ha(®) [P dF(2)=0,

which implies that
(21) (@) P(x) =Llim. h,(2)P(z).
Now, hn(z) can be written as
N’.
ha(z)= 2’ Gy €4 71m®
with
(22) Tom =0
Tf we make the Fourier transform of both sides of (21), we obtain
N’l
&y)= l;ii?&’?‘:llamﬂp(y—. Tom) «
From (16) and (22), we have (20). On the other hand, from (17) and the
Parseval’s theorem it follows that
@) [t v@dy=[ vytatnt@ray, 7=o0.
Now let us define §,(y) and hy(z) as follows,

eo(y):“l("(y'*'a)’ y>0,
=0) y< 0,

g Sy,

ho(2)= 7
‘Then we have
{24) ho(2)= ( 5 A_m 1/2
{cf. Wiener [1], p. 63, (2.0393)), and
[" n@raro={" 1@e@rda=|" 1awray< -,

g W(y+a)e ™ dy,
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that is,
ho(z) € Ly(F).
It is easily proved that h.(z) satisfies (12) (See T. Kawata [1], Theorem 3).
In order to show that h(z) is equivalent to the h(z) in 2, we, further, need to
prove that h,(z) belongs to L F; 0), which, however, is yet to be proved.
Finally, we want to make an additional remark.
Suppose that

j:fvdp(x) < oo,

Jor a positive integer p. Then we have
@yt a8+ agx® - - +a,x” € L,(F 0),
for arbitrary complex numbers ay, ay, -+, G,
To prove this, we wish to show that
(iz)* € Ly(F; 0), k=1,2,---,p.

This, however, follows from
nmr H{n(1 — e~} £ (iz)* [ d F(z) =0 ,

and this holds, since we have

lim n(1 —e~*/®) =14z,

Ha(l—e*™}*—(i2)* | < [n(l —e ) [F + [iz|*
<lzl*+|zlF=2[z*,
and
f’ 412[®dF(z) < oo .
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