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1. - As to the problem of estimation Wolfowitz ([1], [2]) showed that the
minimum distance method provides a (super-) consistent estimate. He employed
there

| 8(F,, F)=sup| F(z)— Fy()]

as the distance between two distribution functions Fj, F, but stressed that his
method can be applied with very many definitions of distance and is in no way
tied to any paticular definition of distance.

In this paper we shall give a probabilistic inequality which holds for a
wide class of distributions, and show that the minimum distance method with
the definition of distance given in [3] a'so provides a super-consistent estimate,
ie, an estimate which converges with probability one to the parameter
concerned. Confidence intervall will also be referred to.

Our distance between two distributions F;, F, is given by

| F—F|l = {L(VW—VWYM}*

when the probabilities of a set £ by F, and F, are expressed by the aid of a
suitable measure m as

F(B)= [ p@)im

RE)=[_piaim

respectively, and R denotes the whole sample space. This distance is invariant
under any transformations of random variables which has the continuous deriva-
tive in the continuous case, and also under any orthogonal transformation of
the square root system of probabilities in the discrete case, so it can be used
for non-parametric problems. Further, in the discrete case, the distance between
the theoretical and the empirical distribution is closely connected with the
chi-square, and with our results it is established that the minimum chi-square
method provides a super-consistent estimate. The same can be said concerning
another related distance, for example, a distance like the Euclidean (see below).
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First, we shall consider a parameter of one distribution, and second, a
“structural ” parameter involved in many distributions. Finally, in connection
with the convergence of estimate, we shall refer to metric in the parameter space.
Throughout this paper we are concerned with finite discrete distributions, since
the other cases can be reduced to that case by, for instance, subdividing the
whole region of definition of distribution functions into a finite number of regions
appropriately. -

2. Let F be a discrete distribution with probabilities D1, Pay =+, Pi for
the events (1), (2), ---, (k), respectively. Let m, be a number of occurences of

event () in n observations. We denote the empirical distribution (ﬂlﬁ, R ﬂ)
n n

by Su. Then our distance between F and S, is given by

1P=s,01=y/ 33 (Ve - Y

THEOREM 1. When the random owariable concerned has o distribution
‘F and ‘each p, of F is positive, then we have

P P=SalP>n) S [P-1+ 25 L — -2+ )]
oy

n il py

Jor any positive number 7.
Proof. Put
=3 (e’

i=1 nP;
and we have clearly

2
| F=S.lP< X
n
consequently

PAIF=Sull>n) S P >0} <

___{L’ 1+L L F—2k+9)|
niy? n =1 p,

When we apply an 1nequal1ty of Wald (see [4]) to x? in the above proof,
we obtain
k N
THEOREM I When np>k+1)+ -——— -1 {zi—kZ—lez}, we have
. (b—1)n =1 p, . .
- 2 . -1
Pyl P=S8, >0} < (1+ (y—k+1) ))

2k—1)+L (2’; —E—2%+2
(]
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Applying these theorems, we can obtain confidence intervals. for the parameters
involved in distribution F or test a hypothesis concerning the parameters. In this
paper, however, we shall confine ourselves to the problem of estimation, especially
that of point estimation, and for this purpose theorem 1 alone will do.
THEOREM II. Under the same condition as in THEOREM I we have

Pr{lim || F—8, || =0} =1

Let 6 be a parameter involved in the distribution F and R a set within
which 6 is known to lie. # may be a vector, but for the sake of brevity we
assume that 8 is a scalar. o

In the following use will be made of -

Condition (B): For any 6 in R, we have '

Pz(9)2p0>0 (2=1, ---, k)
When "this condition is satisfied, we set .
G=k+1+F
Do

Then we have clearly
THEOREM III. Under condition (B) we have
P FO)—SalP>n) < —C
n'n

2

Jor any 8 in R, and
1

n2,’2

G

P, (min{| F(6)~ S,lI*<7)} 21~

From this theorem and the Borel-Cantelli lemma follows
THEOREM IV. We have

P,{lim min || F(0)—S,[|=0} =1
- NP L]

Therefore, the minimum distance-method with respect to our distance gives a
super-consistent estimate of 6, i e., mmll F—8,]|| estimate of 6 converges to 6

‘with probability one, when 8 depends continuously on F. Of course, we coneuder
here the convergence of estimates in the ordinary sense, i.e., the convergence as
real numbers. The convergence in the sense of another metric will be referred
to in 4.

From our result now established it is easily seen that the minimum chi-
square method also provides a super-consistent estimate, when condition (B)
holds. For, concerning x* defined in the proof of theorem 1, we have

Lo < P8P < X
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As to the distance given by

8, S)= g3 (- 2)

we have
’ S,
2 S F-8,|l = >=
Il = Ve
under condition (B). Therefore, the 8, minimum method gives a super-consistent.
estimate, too.

3. Now, let us turn our attention to the problem of estimating the struc-
‘tural parameter which was treated in [1], [2], [5].

Suppose, we make a set of n observations at [ steps and n; denotes a number
of observations at the 4-th step. Let F(f) be a discrete distribution with pro-
babilities pu(0), Pu(6), pw(6) for the events (1), (2), --+, (k). Further, for
each 4 let n;; be a number of occurences of event () in the 4-th step, and

represent the empirical distribution (%1«, cee, %) by S&.
(1 i

As generalizations of distance || || we infroduce two quantities. First,
denote the systems (Fi(6), Fx@), ---, Fi(6)) and (S5, +--, 8F) by F*® and
S*® regpectively, and put

(VY

n 3 j=1

[| F*® . gx® ”5{

ie.,
14
I F*o =80 =2 S || F—S2 |1
n i=1
Second, define
1 i 1
P NPy 2 NyP1rs P NPz
F(“)= T=1 Gt e Fml
n ’ n ’ n
! n ! n,
2 ne—L g, —-—nﬂ Sing —ﬁ"’*
Sm—])i= i=1 3 It | t
n ’ n ’ ’ n ;

{See [2]). Then we obtain

(| P — Sm”s “/‘ ]n,pu/ '/g‘}n 'n,,/

1/ L Ny;
é‘gznzg{l’ Pu""‘&/';i‘}

im1
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]

_—:_lZ ”F‘ (i)“!_ ”F*(D S*(l)”
n .

i

Now, assume that condition (B) is satisfied for all F;. It holds then
E(IlE—SS&’ll‘)é—l,—E{ﬁ‘, (=) |
J=1

Ny Pus

{(y D+l L —p- 2k+2)}

'"'t =1 Py
<+ 1+ -
7y g DPis
k

0

(’i:l, 2, «e, l)

=G

<F+1+

On. the other' hand, we have
[| F*®—8*® P < —77271 N F—SsI°

= 32 2"7’1 | F,=S:2llt

nt
(according to [| Fi— ST |I? < 2)
hence,

B P -5*1) = 22 5 ntB(1 Fo- 591

§ é 32G
i-

Since for any positive number 7 it holds
P{l|F*®—§*® >4} < 2 E(I F*O—§*O|)
7

+wve have the following
THEOREM V. Under condition (B) we have

PL{|| F*o— g0 > ) < 326
. ny
Jor any positive number 2.
From this theorem and relation [| P™—8™ || < || F*¥*®—S*® || we obtain
THEOREM VI. Under condition (B) we have
P A FP—5® || > 5 < 32¢

= ,ni 7)2

Jor any positive number 7.
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These ,theorems can be made more precise for large n (cf. theorem I'),
and all thefe enable us to obtain a confidence interval for the structural parameter
4. Of course, -we assume that 6 depends continuously on each F; when we
consider the convergence in the ordmary sense. We also obtam by the aid
of the Borel-Cantelli lemma

THEOREM VII Undeo condztum (B) we have
Pr{h_mIIF*‘ S*<"|l~0}—
THEOREM VIIIL Unde;;T a:'mzd'it-ion, (B). we. have
Pr{limHF‘”’—lS""’H:O}:

Therefore, the min || F*®—S*®|| estimate and the min || F*™—S8™|| estimate
of structural parameter @ are super-consistent in the ordinary sense, respectively,
when 6 has some continuity property with respect to {F;}, for example, when
{F, n,} has the asymptotic positive distance property as defined in [2].

Now, as related quantities with || F*®—8*®|[* or [| P —S™|% define

and
1

B, 52 )= 331 5 (p,, w)

=1 N y=1

Then we have clearly
1

Py Pro=grop <t ae
4n n
Ls? (B2, 54 < || FrO—8*l| 5 - L si(em, s7w)

R o
provided that cond1t10n (B) is satlsﬁed From these mequa.htles and theorem VIIL
follows that under condition (B) the minimum x* method and. the- mlmmum
5 method give super-consistent estimates of the structural parameter 0, respec
tively. (As regards only ‘the. consistency of the minimum x* estimate, it was.
shown by Neyman [6] without condition (B).)

4. Finally we want to make a remark about metric in the parameter
space.. The distance between parameters thus far used in most literatures is the
Euclidean, i.e., the parameter spacé is considered to be or be embedded in a.
Euclidean space. If we, however, consider the parameter always with the dis-
tribution and its role in the distribution, it would be natural to introduce a
metric defined by the distribution into the parameter space, for example, a metric
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in the space of distributions. In our case, then, a distance between parameters
6., 6; involved in distribution F' is defined as || F(6;) — F(6;)]l. With this defini-
tion of distance in the parameter space, we do not need any continuity assumption
of the parameter on the distribution such as mentioned above, when we want to get
confidence intervals or (super-) consistent estimates. Further, the efficiency of estimate

by the minimum || || method can be considered by E(||F—S,|[®) (é—*k;zl)-
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A REMARK TO ¢“ON THE ESTIMATION BY THE
MINIMUM DISTANCE METHOD ”’

By KAMEO MATUSITA
(Received June 15, 1954)

In the above-named paper (this Annals Vol. V), we can prove
theorems IV, VII, VIII and the statements concerning §, without condi-
tion (B). The proofs are very easy.

As to theorem IV, for instance, we have clearly
min NHF@)—S: ]l = Il F(6o)—Sull

for any 6,. Now, suppose, 6, is the value of the parameter which we
want to estimate. Then, by theorem II we have ‘

r {lim || F(69) — S, l| =0} =1
consequently
Pr {lim mmIIF(G) -8, |=0}=1

20»00

I owe this remark to Professor J. Wolfowitz and wish to thank
him.
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ERRATA

This Annals Vol. V, No. 2

Page 60, line 9, read ‘‘the number of ...”’
instead of ‘‘a number of ...”’

i 1 2 141
Page 63, line 5, read o E+H14 -3

n, Ny =1 Dy;
: 2 151
instead of A*+1+ —3)

Ny = Py
Page 63, line 6,  read i2>(k=+1+i)=£2
n; Do 7y

instead of k2+1+-§~=G

0

Page 80, line 20, read j; ye‘{?‘ dt—( /; yte'i: dt)ﬂ}/
instead of ﬁ Yoo dt( ﬂ yte‘%Y}/
Page 86, line 12, read 2 «(0)/( | ")2

2
instead of Z(e(y)/ f ”)
Page 87, line 2, read y<0 instead of y>0

Page 99, line 1,  read +1 f T y—t) f " —e(z)
Yy Jy v
. 1 x _ 2 z——
instead of +-?; /,,‘ (y—t) j; e(z

Page 90, line 18,  read f “y—t) £ "8 (2—y)e(2)
Yy

instead of f “Y—t)—(e—1)* e2)



ERRATA

These Annals Vol. V, No. 2
Page 63, line 9,

113 27 1 ” . 113 8 1 ”
read <= Xme.- instead of <~ 3 ---
nti=1 nt =1
Page 63, line 10, 13, 14, 19, 23,
read ‘108" instead of “827’
Vol. VII, No. 2
Page 117, line 10,
x—7
d XO=xX0{14__ Y% , ...
rea ¢ ¢ ( x
[ Y; ”
Xi—%,
instead of XP=XP 1+__T_.
i

Page 121, line 2 from bottom,
read “12.718 7, instead of «“2.713”

Vol. VII, No. 3
Page 147, line 2 & 3,

[ ” 13 »

sinh-l[l- .
2

a'(n+1)5)

. 1 ’
sin 5 (

read 7,= instead of —7;=

a’'(n+1/0%)

Page 151, line 6 from bottom,
read “ Py {S, covers 0} is.--"”

instead of “P,{S, covers '} is...”

Vol. VIII, No. 1
Page 59, line 9 from bottom,

read “0.01234, 0.04344, 0.12803, 0.28807, 0.52812”
instead of “ 0.52812, 0.28807, 0.12803, 0.04344, 0.01234”



