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1. Introduction and summary

We shall discuss in 2 about a generalization to the ma.ny-dimer_isional case of
the distance of two one-dimensional d.f.’s (distribution functions) introduced by
P. Lévy [4]. The distance of two p-dimensional d.f.’s F(z, ----, z,) and
G(%, -+, %p) is defined by the minimum value e such that

Flaty—e, -+, tp—e)—e = G(ay, =+ -+, 2p) = Flagte, -o ooy zpte)te

for all points (#;, ----, %p). This metric is equivalent to the convergence of
d.f.’s (THEOREM 1) and the metric space of p-dimensional d.f.’s is complete
(THEOREM 2). By means of our metric we can give a simple proof to the
continuity of the convolution of d.f.’s (COROLLARY to THEOREM 3).

Denote a p-dimensional d.f. F(zy,-- - -, ,) by Fac) where o =(gy, - -+, Zp)-
Let {F,(x)} be a sequence of p-dimensional d.f.’s and let {K,} be the cor-
responding sequence of classes. By the definition the convergence of{ K,} means
that there exist a sequence of positive numbers {a,} and a sequence of vectors
{b,} which give rise to the convergence of the sequence of d. f.’s { Fu(a,2c+8,)}.
In this case there may exist another sequences {a,}. and {b,} which give rise .
to the convergence of {F,(a,%+b,)}. In 3 we shall consider about the re-
lations bstween sequences {a,}, {b,}, {a@.}, {b.] and the limit d.f.’s. Thisis
a generalization of the known results in the one-dimensional case (K. Takano [5])
to the many-dimensional case. . The main result is Theorem 6. )

In 4 we shall discuss about a metrization of the class-convergences of many-
dimensional d.f.’s. This is a generalization of the results in [6] to the many-
dimensional case. We shall introduce the dispersions of the many-dimensional
d.f.’s. If for a sequence of d.f.’s {F,(ax)} there exist a sequence of positive
numbers {a,} and a sequence of vectors {&,} such that the d.f. F,(a,c+b,)
tends to a proper d.f., we can substitute the dispersion of F,(a) for a, (Theorem
9 and 10).

Now, we shall give definitions of some terms used in this paper.
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42 Kinsaku TAKANO

Let D, be the set of all p-dimensional d.f.’s. In the theory of probability,
the convergence in D, is defined as follows. Let Fp=F,(2y, 23, -, 7,) be
elements of D, for all n =0,1,2, --., 1If for any continuity point (zy, 2z,
eeey %) of Fo(ay, 3, * -+, Tp) the sequence {Fu(2y, - -~ G &p); n=1,2, ---.}
converges to Fy(z, - - -+, x,), then the sequence of d.f.’s {F,(z;, -« --, z,)} is

said to converge to the d.f. Fy(a, ----, ,) and we write im Fy(ay, -- - -, 2,)
7-» 00

= Fy(2y, -+ -+, x,) or briefly lim F, = F,. Thus, the space D, is a convergence

space.

We assume that any d.f. is normalized to be continuous to the right at

every point, that is '
Fz,, Tgy “* 0, Bp) = Fz,+0, %+0, -+, 2,+0)
= lim F(oy+hyy 23thg, -+, 2p+hy).
‘ hyd0, k3]0, ...,hp)0

at every point (zy, 25, - -, 2,).

Let K2y, -+ -, 2,) and G(2y, -- -+, %,) be two elements of D,. If there
exist a positive number @ and a vector (b, by, :---, b,) such that

-F(axx'*‘bl; azy+bg, - --, az,+b,) = Gy, 2g, -~ - *5 Tp)

for any point (2, 23, ‘- --, %,), then we write F~G. This relation~ satisfies
the equivalence relations: F~~F; if F~G then G~F; if F~G and G~H then
F~H. Therefore, the ‘elements of D, are classified by letting F and G belong
to the same class if and only if Fi~G. Classes of p-dimensional d.f.’s in this
paper should be interpreted in this meaning. .

Let {K,; n=0,1,2, ----]1 be a sequence of classes of p-dimensional d. {. ’s.
If there exists a sequence of p-dimensional d.f.’s {F,; n =0,1,2, ----} such
that F,e K,(n=10,1,2, ----) and lim F, = F,, then {K,; n=1,2, ---+}
is said to converge to K,, and we write lim K, = K,.

By a unit d.f. we mean the d.f. U(#,, 2, ----, 2,) of a distribution which
has the whole probability 1 placed in a fixed point (Z1, -y 2p)=Cay, -+, ap):

o wy) = {O, if #, < a, for some r (1 <r =< p),
1, if .= a, for all r.

When a d.f. is not a unit d.f, it is called to be proper and otherwise
improper. A proper d.f. may have the whole probability 1 placed in a hyper-
plane. All of unit d.f.’s form a class which is called improper. Other classes
are called proper. The ch.f. (characteristic function, that is, Fourier-Stieltjes
transform) of a.d.f. F(x) is called proper or improper according as the d.f.
F(z) is proper or improper.

U(xn Xgy -
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2. A metrization of the convergence space D, of p-dimensional d.f.’s
Let F(zy, %5, -- -+, %) be a p-dimensional d.f. (p =1,2,----). 1t is

convenient to write & = (2, %g, - - - -, %p) and (@) = F(z;, %5 -+, Zp). Let

e=(11, ----,1) Then
: Hac+ee) = Flayte, xts, -, 2,+6),
. F(w——se) = F{x;—e, Xe—E€, **°°, :b',—e) .
DEFINITION. We define a distance of two p-dimensional d.f.’s F(a) and
G(x), as follows. ' '

(1) d(F,G)=min {e; Hax—ce)—e < G(x) < Ko + c€) + ¢ for all x},
where {e; C} denotes the set of all ¢ satisfying the condition C, and
min {e; C} denotes the minitum value belonging to the set {e; C}.

In the particular case when p =1, V' 2d(F, G) is equal to the P. Lévy’s
distance of F(z) and G(z).

Clearly, d(F, G) satisfies the following properties.

a) OZd(F,G)XL1,d(F,G)=0if and only if F =G,

b) d(-F:,G) =4d(G, F), '

c¢) d(F,H)=<d(F, 6)+d(G, H).

THEOREM 1. Let {F*x); n =0,1,2, ----} be a sequence of p-dimen-
sional d.f.’s. In order that we have ‘

2 lim F*(x) = F(a)
n»o0
in the convergence space Dy, it i3 necessary and sufficient that we have
(3 lim d(F", F*) =0.
2> 00

To prove THEOREM 1. we shall begin with the following lemmas.

LEMMA 1. Let M2y, %5 ----, 2,) be a p-dimensional d.f. If a;, as,
-+-+, a, are continuity points of the marginal d.f.’s Fy(w) = F(z, o,

Tty °°)’ -Fscxs) = 1"(“’; Tg P,y =0y °°), Tty Fp(a’p) = F(°°r T, R
z,), respectively, then @ = (ay,az, ----, ay) 48 a continuity point of F(a)
= P2y, %, -+ -+, 3p). (H.Cramér [1], p 79).

LEMMA 2. If (ay, -+ -+, @) and (@1, -* -, Gp) Grée continuity poinis
ofF(a"lr Tttty Wpy Pyt °°) and F(w’ Tetty Py Tpyry Ut ',"‘xb)’ "'esped":’vez%
then (ay, ----, ap) 18 a continuity point of Fay, -+ -+, Tp).

The proof runs in the same way as LEMMA 1.

LEMMA 3. Let F"(ay, ----, zp) be elements of Dy (n=0,1,2, ----).
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If in the convergence space D,
Lim F*(ay, -, %) = P2y, -+ -+, 3,),

7->00

then we have, for any r (1 <r < p), in the convergence space D,

limﬁm(xu Tttty Ty 0, "")'°°)=Fm(x1; Tttty Tpe 0, ce e, ©).

This is evident if we consider the sequence of the corresponding ch. f.’s, but,
it is instructive to give a direct proof which I owe to Mr. O. Takenouchi.

PROOF. Let (ay, ----, a,) be any continuity point of F%(zy, ----, z,, oo,
©ry0) If (b, ----,8) is a continuity point of F%(co, -+-+, oo, 2,4,
-+, 3p) (r+s = p), from LEMMA 2, (ay, - -+, @y, by, - -+, b,) is a continuity
point of F*(2y, ----, #,). Using simplified notations @ = (ay, ----, @,), b =
(b1, -+ -+, 0) and F™(@, ) = F™(ay, -+ "+, @y, by, - -+, b,), we have

Pa, b) = lim FY (@, b) <lim inf F*(a, ),

.. F(a,b) <lim inf F*(a, «).

Letting (b, ----, b,) tend to (o, +---, ), we have

4 (@, ) < lim inf F*(@, ).

Let @’ = (ai, ----, a,) be a continuity point of F(w, -+ -+, 2,, o0, «---,
o) such that ¢ > ay,a: > a,, -+ -+, a, > a,, and leb b =(by, -+, b) be a
continuity point of F°(co, ----, e, %4, -+ -+, z,). Then (@, b) and (@, b)
are both continuity points of F°(zy, ----, 2,). It holds that

FP(a’, b)—F(a, b) = lim {F*(a/, b)— F"(a, b)}

< lim inf {F*(@/, 0)—F* @, )} < lim inf {1— F*(@, )}

=1-limsup F¥ @, ),
F(a’, b)— F(a, b) < 1—lim sup F*(@, «).

Let & = (b. +--, b,) tend to (o, ¢+, ), and let @' = (a;, ---, a,) tend to
(o0, -+ -+, ), then we have

1-F(a, ) < 1—lim sup F*(a, =)
from which it follows
(5) F(a, o) = lim sup F*(@, ).
(4) and (5) completes the proof.

PROOF OF THEOREM 1. To prove the sufficiency, assume (3). Write
d, = d(F* F*). Then
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Plxe—d.e)—d, < FY(x) < P(x+d.e)+d,, (for all x).
If we let n—>co, then d, —>0 by the hypothesus, and we have
Flc—0) < lim 1nf Fr*(x) < lim sup F*"(x) < F"(ac+0) .
Therefore, for any continuity point a of F°(x), we have
lim F*(x) = F(x).
To prove the necessity assume (2). Denote the marginal d.f. of F°(a)

ocorregponding to the s-th variate by F,(z) (r =1,2, ----. p). For any given
positive number e, we can choose M such that

1-FP (M, M, ----, M) <e,
F(—-M)<e, ('r_.= 1,2, ----,p),
=+ M are both common continuity points of all Fi(2), Fi(z), ----, F,(2).
For every »(=1,2, ----, p), we can devide the interval (—M, M) by
—M=ml<m<----<mir=M
where every m is continuity point of Fi(z) and
[mi—mit| <e, 1=1,2, -, k.

Let

S, = {mg’ ml’ ----,mfr, o}
be the set composed of my, my, -- -+, mir and oo, and let

S =8x8x----x8§,
be the direct product of S;, Sz, ----,and S,. Then § is a finite set and from
LEMMA 1 each element of S is a continuity point of F°(ac). Here, for example,
that a point (@, -+ -+, a,, ©, ----, ) i a continuity point of p-dimensional
d.f. Rz, ----, 2,) :means that the point (a;, ----, @,) is a continuity point of
r-dimensional d.f. (@, ---+, 2y, ©, ----, ©). From the hypothesis (2) and
LEMMA 3, there exists N such that for all » > N and for all x€ S we have

(6) | Pr(a)— F(ac) | < e.
We prove that i
¢ Prlac—ee)—2e < F(ax) < F'(x+e€)+2e¢

for all n > N and for all points & = (2, ----, %p). If (7) is proved we have
d(F*, F*) < 2¢, which completes the proof, since ¢ is arbitrary positive number.

Now assume that n > N. We treat the following four cases determined by
the argument of & = (%, 2, < -+, Tp)-
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Case (a) 2, =< —M for some » (1 =7 =< p). We have
(8) {F"(w)_,S_Fﬁ(—M)<e, :
(o) S BP(—=M)< F)(—M)+e < 2¢,
using that (oo, <+, 0, =M, , -++-, 0) € S. (8) implies .
Case (b) 2, > Mfor all + (1 <r=<p). We have
(9) {F(m)gF"(M,M,----,M)>1—-e,
v Py =P MM, ---- M)>FP(MM,----, M)—e >1—2¢,
using that (M, M, ----, M) € S. (9) implies (7).
Case (¢) |z |=<M for all »r (L<r<p). Choose z,, 2 (r=1,2,
++++, p) such that
(10 t—e<z <z <2 <z+e, z.€8, €8,
and set h
¥ = (&, 2 0 %), ®=(4, 9, 0,8,
then &’ and a’” belong to S and we have (6) for 2 = a' and a”. We have
FY(x—ee)—e < P (a')—e = PU() 5 F(x) = P(&") < FY (&) +e
= F'(xtee)te,
which implies (7).
Case (d) @, %5, -+, %, are divided into two sefs, one of which is

characterized by |2 | < M and another by x; > M. In this case, we may assume
that ' . : }

2| <M, fora=1,2, ----, 8,
x> M, for j =s8+1, ----, p,
where 1 < s < p, without loss of generality. For each r =1, 2, -, 8, choose
%, and 2, such that (10) holds. Let : ,
: & = (i, e, g, o, e, ),
w’lzcx;’,....’z:',po,...-’go)’

then a¢’ and a” belong to S, and we have (6) for s = ' and . Therefore,
it holds that

(A1) P (r—ce)—e < F () —e S F(X') S P2y, + 5 24, 0, -+, ).
And we have A
. Pz, ---'-,'a:,, 0, ety )= BN Gy, v, By Barzy vy Ty)
- (12) ép("m’ ey 00,00, rere, @)= FO(00, curr, OB, Bypr, t ey Tp)
<1-FP(M, ----, M) <e. St -
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From (11) and (12) it follows

(13) F(rx—ce)—2e 5 F(2) .
Next we have -
(14) F'(xc+ee)+e= F*(zte, ----, 2yte, Mte, -, Mt+e)+e

= F(ay, - yze, My -ooo ) M)
applying a resalt of case (c) for (y, -~ -, 2, M, ----, M).
And ’ .
P2y, oo vny gy Bypgy ooy Zp)— (g, ooy ey M, <+, M)
(15) < Fo(c0, +vvvy 00, By, - v, Bp)—F(00, -o-o 0, M, -+, M)
‘ <1-F(M,----, M) < e,
From (14) and (15) it follows
(16) F(ac+e€)+2e = F(ax).

(13) and (16) implies (7). g.e.d. B
THEOREM 2. The metric space D, with the distance (1) i3 complete.
PROOF. Let {F"; n=1,2,----} be a sequence of pdimensiopafl‘ d.f. '8

Under the assumption that

(17)  lim d(P*, P™) =0,

u, mr® .

we sha.lliprove that there exists a p-diﬁlensioha.l d.f. F° such that
(18) lim d(F™, F*) =0.

By making uss of the diagonal method we can choose a 'subsequénoe {F™} such
that for any rational point 7 = (11, ¥3y ** -+, p) we have the limit

(19 S }11‘11 F(r) = ().

F(7) is defined only for rational points 7 and it holds that 0 < F(¢#) <1
and F(ri, 73, <=+, 1) = F(ry, 73, -+, 1) if 5= n, for all . Using this
F(r) define a function F°(ac) as follows

(20) () = ixt F(r),

where (vy, -+, 75) > (24, - -+, ¥p) means that v >z, for all i. For any
fixed point a¢ and for any pesitive number e there exists a rational point' 8 such
that 8> and F(8)< F°(ac)+e.. And it holds that #°(ae) < F(») < F°(x) +e¢
for any rational point » such that & < 77 < 8. Thus we have
(21) F(ac) = lim F(r),
ryx

and
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(22) F°(ax) is continuous to the right.

Let ¢ = (&, -+, 2,) " and ¥ =%, -, ¥) be two arbitrary points
except that 1 < 9y, 2, <1, -+ -+, 4, < y,. For any function G( @y, @, - -,
T,) of p variables set . -

(23) P, y; C) = G(ys, %, =~ -, Up)
—G(=z, Yoy "ty Yp)— o _chly Tty Ype1y Tp)
+G(@y, 3y Ys, -y Yp)F e +G(Ys - *s Yp-2) Tp-1, Tp)

....................

+(—=1)°6(2, 25, -+, 7).

For any fixed & and y = @, choose e =(&y, &5, -+ -, &,) and & = (&, 8y e,
8p) such that a¢+e and 9+ 8 are rational points and. 0 < ¢ < § , then it holds that

P(x+e,y+8; F")=0.
Letting n,—> o we have P(x+e, ¥y+8; F)=0. Letting §|0 we have

(24) P, y; F)=0. |
From our assumption (17) for any positive number e there exists NV such that
(25) Y (r—ee)—e < F(r) < FM(r+c€) +¢

for all  if m and n, both > N. Assuming that 7 is rational, let n, tend to
oo, then we have
F'(r—ee)—e < F(r) < F™(r+e€)+e
Let ¢ be any point and let 7 { o, then we have
(26) Fr(x—ce)—e < F(xx) < F™(x+e€)+e, (m > N(e)),
since F™(ac) are continuous to the right. From (26) we have
(27) P~ 2, - -, 2,) =0, P(2;, —c0, 2y, -+++,2,) =0, -~
ey Py, 3y, v i, 2y, —e0) =0 and
(o0, -+, 0)=1. ‘
From (22), (24) and (27) F°(ax) is proved to be a p-dimensional d.f. From
(26) we have d(F™, F°) < e if m > N(e). Therefore (18) holds.
THEOREM 3. For any p-dimensional d.f. F, G and H it holds that
d(F+H, G+ H)<d(F,G)
where Fx H denotes the convolution of F and H.
PRCOF. Write ¢ = d(F, G), then
Kaxe—ce)—e < G(ax) < Foc+ce)+e, for all a.
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From this it is derived that ‘ ‘
[ [(Rw—ce—y)—claB@ = [+ [6lw—yday)

< [+ [(Rw+ee—y)+elai(y) ,
that is, * ' )
(P H) (@—ce)—e < (G » H)(%) < (Fx H)Y(a+6)+e.
Therefore . o
d(F+H G« H)<e=d(F,6).
COROLLARY, Let F™ and G* be p-dimensional d.f.’s for all n =0,
L2 -.--. Assume that
lim F* = F° and HmG* =G
tn the convergence spaee D,, then it holds that
Hm (F" % G*) = F°*» G°.
‘ Thvis is evident from the following inequalities.
d(F* % G* F° % G*) < d(F* % G*, F*» G*) + d( F° » c",.Fo; 1)
< d(F", P +d(G", G).

We can introduce another metric in the convergence space D, of p dimen-
sional d.f.’s, using the fact that the convergence of a sequence of d.f.’s is
equivalent to the uniform convergence in any finite interval of the sequente of
the corresponding characteristic functions. Let F(ay, ----, #,) and F(2j, ----,
2,) be two p-dimensional d.f.’s and let @,(t;, -- -, ) and @ (t, ----, 1) be
the corresponding characteristic functions. Define a distance of two d.f.’s F}
and F, as follows:

d

@8 (B, B =51 ew o, o ) =gty o 1)

w=l O™ | 2lss

where ||£]| = (fi+6&+---- +5)¥. Then this metric is equivalent to the con-
vergence in D,, and the metric space D, with the distance (28) is complete.

3. Class-convergence of p-dimensional d. f.’s

We begin with the following lemmas.

LEMMA 4. Let {fy(t); n=1,2, ----} be a sequence of one-dimensional
ch.f.’s and let both @(t) and Y(t) be proper one-dimensinal ch.f.’s. If
there erist sequences of positive mnumbers {a,}, {a.] and sequences of real
numbers {by}, {b} such that
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lim =¥ f (tla,) = @(t), :
lime"‘"""f(t/a)—1lr(t), (—e <it<w)

then there exist the limils

hm é’d.l:B

=A>0, lim
O Qn

and it holds that
Y(&) = ¢ p(tld), (—o0 <t< o).

LEMMA 5. In the above LEMMA 4 if <p(t) i8 improper and \Ir(t) 18
proper, then we have

lim—= =0, limg:‘:—b" =B, and ¢@(t) = ™.
An An

LEMMA 4 and 5 are restatements of Théorem 4 and Corofla.ry 2 to it in
K. TAKANO [5] respectively.

LEMMA 6. Let both @(t) and ¥(t) be ch. f.’s of proper p-dimensional
d.f.’s. Then there ezist linearly independent p vectors t,, &5, - - - -, t, such that
both @(t;t) and (E;t) are proper one-dimensional ch. f.’s as functwns of
t(—eo<t<eo) (j=1,2 --- ,p)

PROOF. Let {sy; k=1,2, ----,2p, 1 =1, 2 -+, p} be a set of p-
dimensional vectors such that any p of them are hnear]y independent™. Then
Su, Sa, ***°, Sip are linearly independent for any k. If LEMMA 6 were not
true, there should exist [ = I(k) for any £k, such that it holds that either

(29) . P(8ut)
or
(30) 1I’(-‘hut)
is improper. Since % runs from 1 to 2p, either (29) or (30) holds for at lea.st
p k-values. Assume that
qz(s.mt) are improper, (j =1, 2 Pl < k< e <ky).
Write ¢, = LN Then

_ (_31) t, &, ----, t, are linearly independent
and '
(32) @(t;t) are improper, G=1,2:--+,p).
(1) For example, let {su; k=1,2, ..., 2p,1=1,2, ..., p} be a set of real numbers

such-that any two of them are ddferent and wnte sy =, 8u, 8. ., sk )
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Let X = (X;, X;, -+, X,) be a random vector wit® the ch.f. @(%).
Then from (32) we have

(33) - Tt X=comt, (j=1,2-p),

with probability .1, where £, X denotes the inner product of two vectors ?, and
X. From (31) and (83) X must be a certain vector with probability 1.
This contradict that @(¢) is the ch.f. of a proper d.f.

First we have to notice the special role of the improper class in the conver-
gence space of classes of d.f.’s. In the following, whenever nothing is ex-
plicitly mentioned we shall denote a p-dimensional d.f., and a p-dimensional
vector merely by a d.f. and a vector, respectively.

’

THEOREM 4. Any arbitrarily given sequence of classes {K,.; n=1, 2,3,
--+-} converges to the improper class, i.e., by choosing an adequate d.f. F,
from each K, we can make the sequence {F,} converge to a unit d.f.

This was first proved by A.IL Khintchine [2] in case p =1.

PROOF. Let F, be a d.f. belonging to K, for any n. For each n, we can
choose a positive number a, such that .

: 1 : 1
Fu(_au’ 0, c ey, °°)<7; F,.(OO, —GQny P, -7, °°)<"n—7 Tt

. ) 1 ) 1
Fn(‘”) Tty O, —ay,) < ;’ F.(a,, Apy * "y a,) > 1—;'

Then the sequence of d. f.’s

¢ I"n('nauxl; NApdzy = - mnxp) ’ (n =1, 2; et ') ’
converges to the unit d.f. U(2y, ----, 2,) of a distribution which has the whole
probability 1 at the origin (, «- -+, 2,) = (0, -- -, 0).
THEOREM 5. Lect {Fy(a); n=1,2,----} be @ sequence -of d.f.’s, let
{as} and {a.} be sequences of positive numbers and let {b,} and {b,} be
sequences of wvectors. Assume that the sequence {F,(a,x+0,)} converges to a

d.f. Fo(x) in D,, and that there exist the limits T
lim % =4 and lLm%—Pr—B.
ay Qay

If A >0, the sequence {F,(ax+b,)} converges to the d.f. Fo(Ax+ B), and
if A=0 we have '

F(B—0) < lim inf F,(a,2x+b,) < lim sup F,(a.x+b.) < F(B+0).
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PROOF. We can ssume that @, =1 and b, =0 (n=1,2, ----) without
loss of generality. Let ac be a fixed vector. Then from the hypothesis a.x+b,
tends to Awc+B as n-—>oo. Hence for any positive number ¢ there exists a
number N such that . '

Ax+B—ce < ax+b, < Ax+B+ee, for n> N,
where € = (1,1, ----,1) and (@, -~ -+, a,) < (b, -+ -+, b,) means that a,<b,
for all . We have
F,(4x+B—ce) < F(apm+b,) < Fy(Ax+B+:e),
If Ax+ Bzee are both continuity points of F(a), it holds that
Fy(Ax+ B—ce) < lim inf F,(a,x+b,) < lim sup F,,(a,.w+b,.)
= E,(Aac+B+ee)
As ¢ may be arbitrarily small, we have
F(4x+B—0) < lim int F(a2+b,) < lim sup Fy(ase+b;) -

= F(4x+B+0)
from whlch THEOREM 5 follows.
THEOREM 6. Let {F,(x); n = 1,2, ----} be a sequence of d.f.’s.

Assume that there exist sequences of positive numbers {a,}, {al} and sequences
of wvectors {B,}, {b,}; and that there exist proper d.f’s @(ac), !P(ac) such that

hmF(a,,w+b ) (),
in Dy. Then there exist the limits

’ ° . ’
I — 450, lmZ"bt_p
 Qy O

and we have

P(x) = @(Ax+B). .
Accordingly, 'zfa seqdence of classes {K,; n=1,2, ----} converges to a
proper class K,, the limit proper class K, is uniguely delermined by the
sequence {K,} .

PROOF. Denote the ch. f.’s of F, (), ®(x) and ®(x) by f.(t), ()
and (), respectively. Then the ch.f.’s of F,(a,x+h,) and F(ax+b))
are, _ .
e~ nf (tay)  and &g (41a])
respectively, From the hypothesis it holds that
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 lime~ B g (40, = o(t),

lim ¢~ Bt/Gar 810y = (8)..
Subst1tutmg t¢ for ¢ and considering ¢ as a fixed vector we have
Tim e~/ (t41a,) = p(tr)

(34) .y, , (—w<t<oo'_
_'lime—zb"“/a"fn(tt/a,'.)=\Ir(tt). . ) .

— If the constant vectar ¢ satisfies that both o(tt) and \P(tt) are proper ch. f.’s
as functions of ¢, from Lemma 4, it is seen that there exist the limits

(35) hmv-——-A>O
| n -
L (36) . . _lim ’i"—”’ﬁ ZON

n

On the other hand, from LIMMA 6, there éxist linearly independent p

vectors &, %3, - - -, ¢, such that both (#,¢) and ¥(%,t) are proper ch t.’s as
functions of ¢ for all j =1,2, , p- Therefore,. for each of thess p vectors
E R there ‘exist the limits

(Bt = B(E) .
AS'#,, 8, -+, fy ara linearly independent, there exists the limit
(37) ST Hm (BB e, = '
”'From C35) and (37) We have '
. . lim I'I.(a.,,x+b,.) = (P(Ax+B)
according to 'THEOREM 5. Therefore we have
P(x) = ¢(Aw+B)
COROLLARY 1. Assume that - " o .
v lim F,,(a,.m*i-b,.) = d?(az:) y  (a,>0), .
lim Fla,x+8,) = @(x), (a.>0),
in D,, and thgt @(a) is proper,  Then we have

lim-% =1, 1m0
(27 an

=0.

PROOF. From the above theorem we have
(P(av) = @(Am+.B)
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with 4 = lima,/a, and B = lim (b,—b,)/a,. Denote the marginal d.f. of
?(x) oorresponding to the r-th variate by @(2) (r=1,2, ----, p), and put
.B == ('Bl) Bg, e P) Then

r(a’) Qr(Ax‘}'Br) , (r=1,2, - > P) .

As @(a) is proper, @,(z) is proper, for at least one , hence we have 4 =1
and B,=0. (cf. Corollary 1 to Theorem 4 in K. Takano [5]). From
P(x) = {2+ By) we have B, =0 (k=1,2, ----, p).

COROLLARY 2. Assume that
lim F,(a,x+b,) = @(ax), (ap > 0),
lim F,.(a,',w+b,'.) = w(w) ’ (av’: >0),

an D,, and assume that (D(ac) 8 improper and P(a) is proper. Then there

exist limiis
% —0, 1m%=b%_pg
(2P Qg

lim

and @(x) is s the d. fe of a distribution which has the whole probability 1 at
the point & = B .

This is shown by applying LEMMA 5 to (34).

By the statement that a sequence of random vectors X, =( X, Xpg, * - -, Xop)
converges to a certain vector ¢ = (¢, €3, ** ++, €,) in probability, we mean that
P {35 | Xpe—cs| < e} tends to 1. as n—>co, for any e >0. In order that X,
tends to ¢ in probability, it is necessary and sufficient that the d.f. of X, tends
to the unit d.f. of the distribution which has the whole probabﬂlty 1 at the
fixed point & = c. ‘

COROLLARY 3. Let {X,} be a sequence of random 'vectms, let {a,} be a
sequence of positive numbers, and let {b,} be a sequence of wectors. Assume
that the d.f.of X, tends to o p'ropea d.f. Then, in order that the (X,—b,)/a,
tends to a certain vector B in probability, it is necessary and sufficient that

limag, = and lim b,/a, = —B.

, The necessity is the restatement of COROLLARY 2. The sufliciency can be
shown from THEOREM 1.

4. A metrization of class-convergences of p-dimensional d.f.’s

Like in the one-dimensional case, we define also in the p-dimentional case a
distance between two classes by the distance (1)®between representative d.f.’s



ON THE MANY-DIMENSIONAL DISTRIBUTION FUNCTIONS 56

adequately chosen from the two classes, respectively. As the representative one it
seems natural to choose a d.f., whose disperson is equal to a fixed constant.
Denote the dispersion (without definition) of the probability distribution deter-
mined by a d.f. F(a) by D(F) = D(F(a)). D(F) should satisfy the
following conditions: ' .-

a For any d. f. F(x), a real nwmber D(F) is defined and D(F) = 0.

‘b D(F) =0 if and only if F(ac) is a unit d. f.

¢ D(F(ax+b)) = D(Fx))/a. (a > 0).

d If lim F,=F, then lim D(F,) = D(F,).
However, there exists no D(F) which satisfies these conditions,® So, we shall
substitute the following &' for &.

Y D(F) =0 if and only if the class which contains F belongs to a
netghbourhood of the improper class.

We shall show that there exists the dispersions D(F) which satisfies a, b/, ¢
and d. Let F(ox) = F(2, 23, -+, ¥p) be any p-dimensional d.f. and write
its marginal d.f.’s as follows: ‘ : ’

F(z) = F(z, o, -+--, »), F(z) = F(eo, Ty 00, ccre, 0O) -

Fy(z) = F(eo, Tttty 9 Z-). .
We ghall call the convolution of the marginal d.f.’s

Fi(z) = F(z)« F(2) » - - - » Fy(z)

- the trace d.{.(or the trace briefly) of the d.f. M(ac). Then, we have:

In order that ¢ p-dimensional d.f. F(a) be proper, it is necessary and
sufficient that its trace F*(x) be proper.

Denoting the trace of a d.f. F(a) by F*(z), the trace of ad. f. Flax+d)
iS -_F,*(ax+61+ fece +b,) Whel‘e b= (blj Tttty b,)-

Let F,(a) be p-dimensional d.f,’s and let F*(z) be the corresponding trace
d.f.’s (n=0,1,2, ----). If the sequence {F,(a)} converges to F(a) in
the convergence space D,, then the sequence {FJf(z)} converges to Fy(z) in
the convergence space D, . :

By .tl'xe m.c.f. (mean concentration function) and the dispersion function
of a p-dimensional d.f. F(x), we mean the m.c.f. and .the dispersion

(2) If there exists D(#') which satisfies the set of conditions a, b, ¢ and d, the conver-
gence space of all proper classes is shown to be metrizable, which is impossible.
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function, respectively, which were introduced by K. Kunisawa [8], of the
trace F*¥(z) of the d.f. F(x), and we shall denote them by ‘!’F’\‘x)(l) and
Dp(x)(')’)f

l! -
Vi O =¥y = [ L af@), o<i<e),
Dy = min{l; ¥y =7}, (0O<y<1),

where :
Px) = [T a~ydi1-FH(—g)].
1t follows that o

(38) ¥raw+) D = ¥ 1ay (@) s Ditas 12y (M = Dy (1), (a>0).

and

(39) in case a sequence of d.f.’s {F,(a)} converges to a d.f. Fy(x) in the
convergence space D, , it holds that

limyp () =¥pl), (0<1<ew),

limDF”(fy) = Dpo(fy) , (O<vy<D.
From (38) we have : _
Y ax+8)(F0) =¥ iy (£0), (e >0).
Thus, ¥»(+0) is invariant as F(a) runs in the same class K, We denote this
value by Yr£(0). It holds that

(40) 0=v(0) <1, ¥x(0) =1 if and only if K is improper, and

(41) if Yx(0) <y <1 and Fe K then Dp(y) > 0.
For a fixed ¥(0 < v < 1) we shall call DF'(x)("/) the dispersion of F(a) for
parameter v. Put D(F) =D F(x)('y). The dispersion D(F) satisfies the condi-
tions @, ¥, ¢ and d, where by the neighbourhood of the improper class we mean
the set {K; v < ¥(0) <1}. :

Let 2 be the set of all p;oper classes of p-dimensional d.f.’s, and for aréy
fixed y(0 < v < 1) let 2, = {K; ¥x(0) <v}. Then £, is monotone inereas-
ing with v and 2 = {.,2,. .

On fixing v, we shall define a metric in the set 2,. Let K, and K, belong

to £2.. From (38) and (41), we can choose Fy(#) and Fy(a) such that
FekK, FekK,, Dy(v)=1 and Dp(y) =1 Any d.f. Fa) such that
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Fe K,, and Dg(y) =1, is equal to F(a+c) for some vector ¢. Define the
distance of two classes K,A and K, as follows:
(42) d.(K;, K3) = inf d(Fy(x+¢) , Fy(act+¢1))

. C1e2

| = int d(E(w), F(a+e)),
where d(F(2), Fy(x)) denotes the distance defined by (1).
Let g(¢) = d(F(a), Fy(xc+¢), then g(c) is continuous:
43)  |gle)—g(¢) ] S d(F(x+e), Flet+e)) < [le—d'[],

where || (e, -+ -+, ¢p) || = max ([ ¢, -+, |¢p]). Denote the marginal d.f.’s
corresponding to the k-th variate of F(ac) and Fy(a) by Fu(z) and Fu(z),
respectively, (k=1,2, ----,p). Then, it follows from the definition that

d(Fu(=), Fula+a)) = d(Fy(a), F(ax+e)), (k=1,2,----, ?),
where ¢ = (¢, €z, * ", €p). Since, for any £,

|li[m d(F(x), Fu(ztc)) =1,

we have
(44) lim g(¢) = 1 = sup g(c) .
[telj— c
From (43) and (44) we have
(45) &Ky, K,) = min d(F(), F(x+e))

= min d(F(x+¢), Fi(x)).

‘ We have the following theorems which are easily proved by the same
methods as THEOREM 1 and 2 in my previous paper [6].

THEOREM 7. d.(K, K;) satisfies the awioms of distance in £ :
(46) d.(Ky, K) =0, d(Ki, K) =0 if and only it K, = K,,
(47) 4. (K3, Ky) = di (K3, Ky,
(48) d(K,, K;) < d,(K;, K2)+dT(K?, K).
THEOREM 8. Let K,€ 2. (n=0,1,2, ----). In order that the sequence

of classes {K,} converges to the class K,, it is necessary and sufficient that
(K} converges to K, in the sense of the distance (45). S

COROLLARY. If a sequence of classes of d.f.’s converges to a pa*bper
class, then the limiting proper class is uniquely determined by the sequence.
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We shall denote the dispersion of the d.f. of a p-dimensional random vector
X by Dx(y).

THEOREM 9. Let {S,; n=1,2, ----} be a sequence of p-dimensional
random variables and let G(ac) be a p-dimensional d.f. Assume that Dg(v)>0,
and Dg (v) >0, (n=1,2, ----), for some v, (0 <v < 1). Piging such a
v, put D= Dg(v) and D, = Dg (v). Then, in order that there exists a
sequence of positive numbers {a,} such that the sequence of the d.f.’s. of
Sula converges to G(ac), it is necessary and sufficient that the sequence of the

d.f.’s of -D%

This is a conclugion from (39) and THFOREM 5. (cf. K. Takano (6),
THEOREM 5). ,

THEOREM 10. Assume, moreover, that the median of any marginal d.f.

of G(a¢) 1is uniquely determined and is equal to 0. Let M, = (1rip, Myg,
‘e, Myy) be a vector such that me 8 o median of the i-th component of
S, (n=1,2, ----). Then, in order that there exist a sequence of positive
numbers {a,} and a sequence of vectors {b,} such that the sequence of the
d.f.’s of (Su—by)/a, converges to G(a), it is necessary and sufficient that the

sequence of the d.f.’s of Su—my converges to G(x) .
“ DJD

(cf. K. Takano [6], THEOREM 6)

converges to G(a) .
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