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1. Introduction

In the theory of probability it occurs very often, that for a given sequence
of random variables {S,}, there exist a sequence of positive numbers {a,} and
a sequence of real numbers {b,}, such that the sequence of the distributions of
(S,—U)/a, converges to some distribution. When only the existence of {a,} and
{b,} are known, it is important to discuss the general method to determine the
values of a, and b, For this purpose, we have to consider the metrization of
class-convergences of d.f.’s (distribution functions). It is well known that any
arbitrary sequence of classes of d.1/s {K,} converges to the improper class (A.L
Khintchine [2]). Therefore, we have to omit the improper class, when we
consider the metrization of class-convergences. However, W. Doeblin [1] has
shown that the convergence space of all proper classes is not metrizable. In this
note, we shall discuss a metrization of the class-convergences except for an adequate
neighbourhood of the improper class. It is sufficient to leave out the classes of

d.f.’s F(z) having the property that K+0)— K 0) is near to 1, where Rz)
is the convolution of F(z) and [1—F(—z)]:

Ha) = f_ " Fa—y)d[1-F(-9)].

Terminology: Two d.f.’s F(z) and G(z) belong to the same class, if
and only if there exist ¢ and b such that Flaz+b)=G(z). In the convergence
space of the d.f.’s, a sequence of d.f.’s {F.(2)} converges to a d.f. Fy(z)
(lim F,(z) = Fy(z)), if and only if {F,(2)} converges to Fy(z) at every con-
tinuity point of the latter. A sequence of classes of d.f.”’s {K,} converges to
a class K,, if and only if there exists a sequence of d.f.’s {F,(2)} such that F,
e K, (n=0,1,2,...) and lim F,=F,. We denote P. Lévy’s distance of two
d.f.’s F(z) and G(z) by d(F(z), G(z)) or by d(F, G) (P. Lévy [4], p. 47).

A sequence of d.f.'s F(z) converges to a d. f.: Fy(z) if and only if Lm; d(F,,
F)=0.

2. A Metrization of Class-convergences of d.f.’s
Let F(z) be a (one-dimensional) d.f., and let ¥#(1) be its m.c.f. (mean
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concentration function) introduced by K. Kunisawa [3]:

(D= f_z Fz—z;di’(z), (0 <l < o).

Clearly ¥»(l) is non-decreasing, continuous, and we have
0<¥()<1, ¥i(0)=1, ¥x(+0)=F+0)—F—-0).
The inverse of the m.c.f. Yz(1), g
Diu(y) = min{l; ¥x(D) =7}, (O<v<1),
is called the dispersion function of the d.f. F{(z), and for any fized v, (0<v<1),
we shall call Dp(y) the dispersion of F(z) for parameter 7.

We shall use the following properties of the m.c.f.’s and the dispersion
functions.

Pve(+0) <1, if F{z) is proper.

(1) Ye(+0) =1, if F(z) is improper.
(2) If ¥»(4+0) < ythen Dx(y) > 0, and conversely (0 < v < 1).
(3) Vran(l) = Yra(al), Draen ) = %Dm,('r) ;

(a > 0).
In case a sequence of d.f.’s {F,(z)} converges to a d.f. Fy(z), it holds that
() Hm e, (1) = ¥r ), (0<1< ),
and .

(1)—(4) are easily proved and (5) is derived from (4) (see, for instance,
K. Takano [5], Theorem 3). Both (4) and (5) hold at every point in the
respective open interval, since neither Yr»,(!) nor Dg,(v) have discontinuity points.
This is the reason why we use Kunisawa’s m.c.f.’s instead of P. Lévy’s maximal
concentration functions.

From (3) we have

Vr@n(+0) = ¥re(+0) = F( +0)— F( 0), (a>0).
Thus, ¥#(+0) is invariant as F(z) runs in the same class K. We denote this
value by Yx(0). It is clear that

(6) 0 <¥x(0)<1,  ¥x(0)=1if and only if K is improper.

If ¥x(0) < v <1 (v constant) and Fe K, then De(v) >0 by (2). Write
F(z) = F(Dg(y)z). Then from (3) we have ’

‘De(m) =1, FekK.
Thus, we obtain the following
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Lemma 1. 1f a class K satifies ¥x(0) < <1 for a constant v, there
exists a d.f. F(z) belonging to the class K such that De(y) =1.
i Let © be the set of all proper classes, and for any fixed (0 < 'y < 1), let
={K; ¥x(0) < v}. Then Q; is monotone ificreasing with v and 2=\ Q..
On fixing v, we shall define a metric in the set 2,. Let K, and'k, be
two classes belonging to 2,. From Lemma 1, we can choose two d.f.’s Fy(z)
and Fy(z) such that Fie K,, F,e K;, Dr(v) =1 and Dp(y) =1. Any
d.f. F(z) such that Fe K, and Ds(v) =1, is equal to Fy(z+c) for some
constant ¢. Define the distance of the two classes K, and K, as follows:
(7 d.(Ky, Ky) = inf d(F,l(x+él); F(z+a))

= 1nf d(F(ﬂ?), ,(:c+c)),

egrsl
where d( Fy(z), Fi(z)) denotes P, Levys chstanee of two d.i.s F(z) and Fy(z).
Let g(c) = d(F(z), Fs(z+¢)). Since g(c) is continuous:

lo(e)— 9()| < dCFa+0), Fila+e)) S Vo=,

and
Lim g(c) = V2 =aup g(c),
it holds that
(8) . &(Ky Ky) = min d(Fy(2), F(z+c))

= min d(F(z+oc), Fs(w)) .
—ooeloo

We have the following

THEOREM 1. d(K;, K,) satisfies the aziom of distance in Q:
(9)  d(KyE)Z0, d(K,K)=0 if andonly if K=Ky,
(10) d.(K,, Ka) d.(Ky, Ky),

(11) ‘ (B Ky) < d Ky, Ky) +di(K,, Ka)

Proof. (9) and (10) are evident. To prove (11), take a d.f. Fy(z)
from the class K, such that Dp(v)=1. Then there exist F;(z) and F3(z) such
that Fy(z) € K,, F(z) € K,, Dr(v)=1, Dr(v)=1 and d.(K;, Kp)=d(F, Fy)
and d.(K,, Ky)=d(F,, F;). From the last two equalities, we have

d(Ky, Ky) < d(Fy, B) < d(F, B)+d(F, F)=d,(K;, K)+d(Ky Ks).

" THEOREM 2. Let K,€ 2, (n=0, 1, 2,...). In order that the sequence of
classes {K,} converges to the class K,, it is necescary and sufficient that {K,}
converges to K, in the sense of the above-defined distance.. ‘

roof Sufficiency: Assume that d.(K,, K,)—>0. Let Fy(z)e K, be
such that De,(7)=1. Then there exists Fo(z)€ K, such that Dr,(y)=1 and

’
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d(K,, K,)=d(F,, Foj for every n. From this and the hypothesis, we have
lim d( F,, F,)=0 which means that { F,(2)} converges to Fy(z) and, consequently,
that {K,} converges to K.

Necessity: Assume that {K,} converges to K;. Then there exists a sequence
of d.f.’s {F,(x)} such that F,(z)e K, (n=0,1,2,...) and

(12) lim F,(z) = Fy(z).

Let D,(v) be the dispersion of F(z) (n=0,1,2,...). Then from (12) we have
(13) lim Dn(')') = Do('Y) ’

and

(14) Dy(v) >0, (n=0,L12,...... ),

making use of (5) and (2), respectively. From (12)—(14) we have

(15) . lim Fo(Da(7)2) = F(Do(v)2) .

Since the dispersion of the d.f. F,(D,(v)x) for parameter v is equal to 1, it
holds that

(16) (K < d( Fu( D)) , (D))

As (15) implies that the right hand side of (16) tends to zero, we have
limd,(K,, K,)=0 which is to be proved.

Making use of Theorem 2 we can give a simple proof to the following
theorem of A.1. Khintchine [2].

Covollary: If a sequence of classes of d.f.'s converges to a proper class,
then the limiting proper class is uniquely determined by the sequence.

Proof. Assume that a sequence {K,} has two limiting proper classes K,
and K;/. Then there exists v (0 < v < 1) such that £, contains both K, and
K. Fix such a . For sufficiently large n, we have K,€ 2.. Since the con-
vergence space 2, is metrizable, it holds that K, = K.

In the above we have used the fact that £. is open in the convergence space
£. It is clear that £, is not closed in the convergence space £, however, we
huave the following

THEOREM 3. The metric space 2, is complete, i.e., any fundamental
sequence converges. .

Proof. Assuming that K,e 2. (n=1,2,...) and that hm dr(K,,,K) 0,

we shall prove that there exists a class K, such that K,e Q. and lim d.(K,, K,)

—0 . From the assamption there exists a subsequence iK,-::} such that
ZdT(K,.m K, .n)<o. Let Fi(z) be a d.f. belonging to the class K, such
that Dy (y)=1. Then we can choose successively Fp(z), Fy(:w),eeeee - such that
F(z) e Ku, Df‘(*)'):l and d(F, Fi.)=d.(Knw, Kpiry), (1=12,...). Since
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A(F,, B) < S1dCF, Fut) = S (Ko, Kuen), < ),
it holds that hm d(Fy, F)=0. From the completeness of the metric space of
d.t/s with P. Lévys distance, thero exists a d.f. F,(z) such that hm d(F, F,)
.—0 from which we have hmDF (v) = Dp,(v). As Dp‘('y)— 1 we have

Dgpy(v) =1 which implies that \[ryo(+0) < 7. Let K, be the class containing
the d.f. Fy(z). Then K, belongs to 2, and it holds that hm d.(Kpus,, Ky)=0.
From the assumption we have lim d.(K,, K, )=0. Therefore it holds that

n,n(%)» 0
lim d.(K,, K,) =0.

For any two classes K; and K, belonging to £, there exist d.f's, F(z)

and Fy(z) such that F(z)e K,, Fy(z)e K,;, Dp(v) =1, Dp(v)=1 and

d.(K,, K;) = d(Fy, F;). In this case we may assume that one of the two d.f.s

has zero as a median, but it is not a.lways possible to choose them so that both
have zero as medians.

Ezample: Let
0, ‘ r< —a,
F(z) =1 (#+a)/2a, o< z<a,
1, z>a,
(O, z < -1,
F(z) = (z+1)/2, —-1l<2<0,
(1, z>0.

Then we have _
Y +0) =0, Ye(+0) =1/4.
For some v (1/4 < v < 1), it holds that Ds(v) = 1. Fixing such v we can
determine a so that Dy (v)=1. It is gasy to.verify that 1/2 < a < 1, using
1 -1 2a ? 4a®
Pri) = ot 2 og(1447)

and

1, 1 L1
() = 1og( z’>

Let K; and K; be the classes which ‘contain Fy(z) and F;(x), respectively. Then
it holds that
(K, Ky) = d(Fn(x+a/2), F(=z)) < d(F,(a:), F (=) .

The medians of F,(%) and Fy(2) are both determined uniquely and both equal
to zero. - o '
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We notice that if the median of a d.f. F{z) is uniquely determined, so is
also the median of a d.f. Flaz+b) (a > 0). ‘

THEOREM 4. Let {K,; n=0,1,2,...} be a sequence in 2, and assume
that:any d.f. belonging to K, has the uniquely determined median. For any
n,.let Fo(z) € K, be any d.f. with median 0 and dispersion (for parameter
v) 1. Then, in order that {K,} converges to K,, it is necessary and sufficient
that {Fa(2)} converges to Fo(z). : '

Proof of Necessity, Assume that {K,] converges to K,. Then there
exist sequences {a,! and {b,} such that ‘

(17} lim F,,(q,,:b'—l-b,,) = ﬁ:)(a_oz"'bo) ’ (an > O; n=0) 1: 2) "')'
As F,(asx+b,) has the dispersion 1/a, and median —b,/a, for any =n
(n=0,1,2,..), from (17) we have :
(18) : { l?m (1/e,) = 1/a,, and
- im (—ba/an) = —bolao, ,
(see, for instance, K. Takano [5], Corollary 2 to Theorem 3) which has the result
that a,—~>a, and b,>b,. Therofore, from (17), it holds that lim F,(2) = Fo(z).

Using this Theorem -4, we can solve the problem stated in the introduction.
However, it seems natural to do so by using (5) and the following

Lemma 2. Let {F(2); n=1,2,...} be a sequence of d.f's, let G(x) be
a d.f., let {a,} and {a,} be sequences of positive numbers, and let {b,} and
{Bn} be sequences of veal numbers. Assume that

lim F,.(a,.:v+ bs) = G(x) )

lm&=1 Bn n_o.
Uq (229

Then we have :
lim F,(anx+¥3,) = G(=).
(K. Takano [5], Corollary 3 to Theorem 4.) ’

We shall denote the disperson of the d.f. of a random variable X by Dx(v).

THEOREM 5. Let {S,; n=1,2,...} be a sequence of random variables
and G(2) be a d.f. Assume that Ds(y) > 0 and Dsn('y) >0, (n=1,2,...),
Jor some v, (0 <y < 1). PFizing such a v, write D= Ds(v) and D,
= Ds (v). Then in order that there exisls a sequence of positive numbers
{ay) guch that the sequence of the d.f.’s of Salas converges to G(z), it is
necessary and sufficient that the sequence of the d. f.'s of

Sy
D,/D
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converges to G(z). .

THEOREM 6. Assume moreover that the median of G(x) 1is uniquely
determined and 1is equal to 0. Let {m,} be a sequence of medians corresponding
to {Sp}. Then, in order that there exist a sequence of positive numbers {ay,}
and a sequence of real numbers {b,} such that the sequence of the d.f.’s of
(Sp—bn)/a, converges to G(z), it is mecessary and sufficient that the sequence
of the d.f.'s of

Sp,—m,
D,/D /
converges to G(z).

3. Case when P. Lévy’s dispersion is used

Let F(z) be a d.f. and Qr(!) and Lz(v) be respectively its maximal
concentration function and dispersion function introduced by P. Lévy (P. Lévy
[4], p. 44). Qr(+0) = sup[ F(z+0)— F(x—0)] is invariant as F(x) runs
in the same class K. We denote this value by Qx(0). Substitute @#(1), L#(v)
and Qx(0). for ¥x(1), D) and Yrx(0), respectively, in the preceding argument,
then Theorem 1 holds and Theorem 2 and 4 hold if the dispersion function of
a d. f. belonging to K, is continuous at 7.
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