On the Poisson-Gamma Distribution Problem*

By Leo A. Goodman

(Received April 16, 1951)

Let

$$X_1, X_2, \cdots$$
 (1)

be a sequence of non-negative variables independently distributed according to the same distribution function F(x). Let x be any positive number, and N_x be a random variable defined as follows:

$$N_{x} = \begin{cases} 0 & \text{if } X_{1} > x \\ n & \text{if } X_{1} + X_{2} + \dots + X_{n} \leq x \text{ and } X_{1} + X_{2} + \dots + X_{n+1} > x. \end{cases}$$
 (2)

If F(x) is the Gamma distribution function

$$F(x) = \begin{cases} 0 & \text{for } x < 0 \\ \int_0^x \frac{t^{\alpha - 1}}{\Gamma(\alpha) \beta^{\alpha}} e^{-\frac{t}{\beta}} dt & \text{for } x \ge 0, \end{cases}$$
 (3)

then N_x is, as is known, distributed according to the Generalized Poisson Law.

$$P_{r} \{N_{x} \leq n\} = e^{-f(x)} \left[1 + f(x) + \frac{1}{2!} f^{2}(x) + \frac{1}{3!} f^{3}(x) + \cdots + \frac{1}{[(n+1)\alpha - 1]!} f^{(n+1)\alpha - 1]}(x) \right], \tag{4}$$

when α is a positive integer with $f(x) = \frac{x}{\beta}$.

Mr. Seiji Nabeya [1] has proven the converse of this fact when $\alpha=1$. In this paper we show that, when F(x) is continuous, a somewhat simpler proof of the Nabeya result may be given which extends his theorem to the case when $\alpha\leq 2$.

Theorem. Let (1) be a sequence of non-negative independent random variables with the same continuous distribution function F(x), and let N_x be defined as (2). If N_x is distributed according to the Generalized Poisson Law (4), with fixed $\alpha \leq 2$, for every positive x, then F(x) is of the Gamma type (3).

Proof: Denoting the distribution function of $X_1 + X_2 + \cdots + X_n$ by $F_n(x)$ we have that

^{*} This work was prepared under an Office of Naval Research contract.

$$F_{n}(\mathbf{x}) = \begin{cases} 0 & \text{for } \mathbf{x} < 0, \\ 1 - e^{-f(\mathbf{x})} \left[1 + f(\mathbf{x}) + \frac{f^{2}(\mathbf{x})}{2!} + \dots + \frac{f^{n-1}}{(n\alpha - 1)!} \right] & \text{for } \mathbf{x} \ge 0. \end{cases}$$

$$F = 1 - e^{-\sigma} \left[1 + g + \dots + \frac{g^{n-1}}{(\alpha - 1)!} \right]$$
(5)

Since.

is an increasing continuous function of g, the inverse function g(F) is an increasing continuous function of F. Also $F = F_1(x)$ is a non-decreasing continuous function of x, and therefore, g(F(x)) = f(x) is a non-decreasing continuous function of x. Furthermore, f(x) = f(y), for x < y, only when

$$P_{r}\left\{x < X_{1} + X_{2} + \cdots + X_{n} \leq y\right\} = 0.$$

Hence,

$$P_r\{f(x) < f\} = H_n(f) = \begin{cases} 0 & \text{for } x < 0, \\ 1 - e^{-f} \left[1 + f + \dots + \frac{f^{n\alpha - 1}}{(n\alpha - 1)!} \right] & \text{for } x > 0. \end{cases}$$

If x[f] denotes the inverse function of f, then we have for t>0

$$\int_0^\infty \frac{f^{n\alpha-1}}{(n\alpha-1)!} e^{-i\alpha C(1)-f} df = \phi^n(f).$$

For fixed t, we regard

$$\frac{\hbar^{\omega-1}e^{-b\omega(h)-h}}{(\alpha-1)!\,\phi(t)}\,dh$$

as a probability density of the random variable h.

Hence we have that

$$E\{h^{a(n-1)}\} = \frac{(n\alpha-1)!}{(\alpha-1)!} \phi^{n-1}(t),$$

$$E\left\{\left(\frac{h^a}{\phi(t)}\right)^{n-1}\right\} = \frac{(n\alpha-1)!}{(\alpha-1)!}.$$

and

It is easy to see that if y is a random variable with probability density

$$\frac{e^{-y^{\frac{1}{\alpha}}}}{\alpha !}dy,$$

then its moments coincide with the moments of $\frac{h^a}{\phi(t)}$.

For $\alpha \le 2$, it is well known [9] that the moment problem is determined. Hence we have that,

$$y^{\frac{1}{\alpha}} = tx \left[(y\phi(t))^{\frac{1}{\alpha}} \right] + (y\phi(t))^{\frac{1}{\alpha}},$$

$$x \left[(y\phi(t))^{\frac{1}{\alpha}} \right] = (y\phi(t))^{\frac{1}{\alpha}} \left[\frac{\phi(t)^{-\frac{1}{\alpha}} - 1}{t} \right],$$

$$x[f]=f\left[\frac{\phi(t)^{-\frac{1}{\sigma}}-1}{t}\right].$$

This proves that

$$f(x) = \frac{t\phi(t)^{\frac{1}{\alpha}}}{1 - \phi(t)^{\frac{1}{\alpha}}} x = \frac{x}{\beta}.$$
 (6)

Substituting (6) in (5), we have the desired result.

REFERENCES

- [1] Seiji NABEYA: "On a Relation between Exponential Law and Poisson's Law",

 Annals of the Institute of Statistical Mathematics, Vol. II, No. 1, Aug. 1950.
- [2] J. A. SHOHAT and J. D. TAMARKIN: "The Problem of Moments", Mathematical Surveys, No. 1, American Mthematical Society.

The University of Chicago.