On the Theory of Statistical Decision Functions
by Kameo MaTusiTa |

1 Introduction

The theory of statistical decision functions has been developed since
1939 principally by A. Wald, and the results thus far obtained are presented
in his book Statistical Decision Functions (1950). He founded his theory on
that of zero-sum two-person games with infinitely many strategies, an ex-
tension of the theory of J. von Neumann. In the present paper we shall
give a new establishment of this theory on the basis of simpler assump-
tions. Our treatment differs from that of Wald in two principal points:
Tirstly, while Wald considered the randomized decision function i.e., the
probability distribution on the space of all decisions, which is determined
by the sample point, we shall consider the probability distribution on the
space of all decision functions, which we call the mized decision function.
Secondly, while he took into account of the cost function from the beginning,
we shall do that only after the main results are obtained. This way of
treatment has brought about a considerable simplification of the theory, and
as we hope it, it will be not without interest also from the viewpoint of
the practical application. In the last section we shall treat the case where
the number of possible distributions is finite, and show how we can make
the risk in decision as small as desired.

2 Basic Assumptions and Some Easy Consequences

In this section we shall formulate the underlying assumptions of our
theory. '

Let R denote the sample space. Then

(4. R) 'There are defined a Borel field & of subsets of I and a mea-
sure m on K.

The sample space R may be a finite dimensional space or an infinite
dimensional one and the measure m may be a Lebesgue-measure or a
discrete one, i.e., a measure which gives the value 1 to each point of a
certain. subset consisting of (discrete) countably many points in R. In the
following exposition we limit ourselves to the “continuous case ”, but it is
clear that the “ discrete case ” can also be treated in a quite analogous way.

Let Q be the set of all admissible distribution functions on £. The
first assumption concerning & is the following
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(4,9,1) FEach distribution function F' of Q is absolutely continuous
with regard to m, i.e. each F adnﬁts'an‘expression F(E) = / p(z) dm.
E

p(2) is the density function of I7; it is uniquely determined up to a set
of m-measure zero.

with respect to the measure m, as / p(2) dm = ]., we introduce a metric
' . JR ‘

in O as follows. S
Definition 'The distance between any pair of elements I, and F, of Q

is given by ||F) — il = ('[(x/p,(%) — u/jobz(ai)’)zdm)%, where p,(x) and

pe(%) denote the density functions of I, and F}, respectively.

Q becomes thus a metrm space. We have then the following corollary
to this definition. 4 7

Cor ollary 1 If a sequence of distribution. {F,} converges to a distri-
bution F in the sense of the metric || ||, then the sequence {F,(F)} also
converges to F(E) uniformly ‘with respect to B, where I denotes an arbi-
trary subset of R.

Proof As

|F\(B) — F(B)| = ‘/pn(w) dm — fp z) dm

g /‘]pn x) — p(x)|dm </|pn(® p(z)|dm
E
where p,(x), p(x) denote the density functions of F, and F respectively, it

is sufficient to show that / |pa(2) — p(x) |dm — 0 when / (K/p,,(fc) —
o JIR JR

N pl( )) dm — O

Now, we have

/lm p(x) |dm = /1«/1% (z) + N/p(oc)\ ]«/pn(x Vp(x)'dm
= / (v palo) + &/p(2) ) dm [e (v pul) — ~/p(@))’ dm}E
=2||F, - F|

The last term tends to zero as n — oco. Therefore, / | P (Q,) — p(e) ]Jm
R

also tends to zero as n — oo, which completes the proof.
Then we make a further assumption concerning (.
(4. Q. 1I) Q is a compact metric space with respect to the metric || ||
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From this assumption we have clearly the following

Corollary 2 € is separable.

Let D denote the set of all decisions, which can be made by the ex-
perimenter. Further, let 1V(F,d) denote the weight function, which re-
presents the loss by the decision d of D when F is the true distribution
function. We make the following assumptions concerning the weight
function. ‘

(A. W.I) W(F,d) is a bounded, non-negative function defined on the
product space 2 x D. We assume ‘

0= W(Fd) <1 for every F and d.

(4. W.II) For cvery d of D W(F,d) is a continuous function with
respect to F.

- Now we introduce a metric in D as follows.

Definjtion. The distance between two elements d,, d. of D is given by
po(ds, du) = max| W(F, d,) — W(F,d,)]|.

D becomes thus a metric space. Then we make the following assumption.

(4.D) D is a compact with respect to pp.

From (4.D) we have clearly the

Corollary 8 D is separable.

Definition A mapping from R onto D is called a (statistical) decision
function.

As the class of all decision functions is too broad, we must restrict
ourselves to a narrower class, which is easy to deal. For this purpose we
introduce a notion of measurability of decision functions.

Definition A statistical decision function d = @(z) is called &-mea-
surable, when for any open subset e of D the set {x; @ (z)ee} belongs to .

Then we have the following

Corollary 4 When a sequence of $-measurable decision functions
$@,(x)} converges to a decision function @{x) at every point z in R, then
@(z) is also &-measurable.

Proof For an arbitrary open set ¢ in D, we have the following logical
cquivalence : ’ ,

@(x)ee Z @.(r)ee, n = some n, (—> ze $2; @, (x)ee}, n = some n,,)
Hence

{o; d(x)ee} = 0 ﬁ {a;d,(v)ee} e®
ng=1 n=ny
This proves the corollary.
Now, we assume
(A.D) The class of decision functions at the disposal of the expri-
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menter is the set D of all the ®-measurable decision funetions.

‘When a sequence of decision functions {@,.(z)} converges to a decision
function @ (z) at every point », we say that {@,} converges to . Then a
topology can be defined in the class of all decision functions by this eon-
vergence and we have from Corollary 4 the following

Corollary 6 D is a closed set.

3 Some Lemmas

In this section we shall prove some. lemmas for the later use.
Lemma 1 W(F,d) is a continuous function on Q x D.
Proof let F, - F, d,—d. Then we have :
|W(F;, di) — W(F,d) | S| W(F, di) — W(F,,d)| + | W(F,d) — W(F,d)|
= po(di, d) + | W(F,d) — W(F,d)]|
- The last term tends to zero on account of (4. W.II).
Lemma 2 For any F of Q& W(F,@(z)) is a 8-measurable function of .
Proof The lemma follows clearly from the fact that
{2; W(F,0(2))> a} = {z;9(2)ee, ¢ = {d; W(F,d)> a}}
for any real a.
As a consequence of this lemma we can consider the risk function

r(F, )= [ W(F,p(x))dF
for any F and @(z).
Lemma 8 ¢(F, @) is a continuous function on  x D, and satisfies the
inequality 0 < »(F, @) < 1.
Proof Let (F;,®.)—(F,®), where F, FieQ, ¢, p,D. Then, we have

(Fo9) = 1(F9) = [WE, pa)p@)dm — [W(F, p(z))p(s)dm]
= | [W(Fo gl Y(puls) - p(&) jim

+ [, 9(2) = WE, 9(2)) p(ayim|
Now .

“/;W(Fu ¢:(m))(p‘(x) —P(x))dm’

™) = [Ipdm) —p@)dm—0 (i)
On the other hand, as

| W(EF, pi(z)) — W(F, p(x)) p(z) < 2p(2),
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p(z) is integrable and for every z

(W(E, p:i(2)) — W(F, () Jp(z) >0 (i —> o),
it holds therefore

@ [(WE, o) = W 9@) p@)in =0 (i),
From (*) and () we have

l v(Fi, @) = (¥, @) (4 — o0),
which proves the first part of the lemma.

The second part is clear.

Lemma 4 D is o compact space.

Proof As @(x) assumes a value in D for every z in R, D is em-
bedded in the (infinite) product space D* as a topological space. Now, D
is compact, therefore, D also is compact by Tchychonoff’s theorem. Then
it follows from Corollary 5 that D is compact.

From this lemma we see that 2 x D is a compact space. Hence we
have the

Lemma 6 When @,(z) —> @(x) (n— o),

r(F, @,)—r(F,p) uniformly in F.

Now we introduce a metric in D.

Definition For two elements @, @' of D the distance p: between them
is given ' '
px(p,9') = lggxlr(ﬁ‘, P) — T(F: ¢/)l

The topology in D by this metric p» is weaker than the former one, as
can easily be seen from Lemma 5. Therefore, if we identify the clements,
between which the distance is zero, and denote by T* the space obtained
in this way from 9, then we have tho

Lemma 6 D% is a compact, metric space.

Consequently, T* is separable.

It is clear that »(F,®) is a continuous function on the product space £
x D%, which is a compact, metric and separable space.

Lemma 7 (Helly's Theorem) Let {w.} le a sequence of distribution
Sfunctions on a Bovel field generated by all the open scts in o compact, sep-
arable (metric) space, which converges to p in the ordinary sense  TFhen it
holds for any continuous function f(x) and any set with w(E— E°)=0

*) The convergence of {u,} to x in the ordinary sense means that for any set E with
w(E — E% =0 u,(E) converges to u(E), where E and E° denotes the closure and the open
kernel of E respectively.
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[r@dp— [f@dn  (n—eo)

Lemma 8 The set of all the distributions on a Bovel field generated by
all the open sets in a compact, separable (metric) space is a compact space
with respect to the ordinary topology.®

These two lemmas are the Lemma 2 and 6 in my previous note A
Remark to the Wald’s theory of Statistical Inference, Ann. Inst. Stat. Math.
Vol. I (1950) and the proofs are omitted.

Lemma 9 Let an (m-n)-matriz (a;) of real nwmbers .sat&sfl the fol-
lowing condition :

For any system. of non-negative nwmnbers §,,...... , En there cxists at least
m
. one non-negative number among > Eay, (j=1,...... ) 10).
=1
Then, there emats a system of non-negative fnumbe:.s Tyeeeee My whose sum
is 1, such that all Zaim, (t=1, ..., m) are non-negative.
J=1

This is a theorem due to J. Ville and the proof is omitted.**’

4 Main Results

In this section we shall show the existence of an optimum solution to
the' problem of decision functions and deduce its main properties as they
were obtained by Wald.

Let S, & be the Borel fields generated by all open sets in Q, D* res-
pectively. In the following we shall consider the distributions u, & on those
Borel field &, ¥ and call them singly the distributions on Q, % u is
called also an a priori distribution and 8 a mized decision function. As
Q x T* is metrizable and r(F, @) is continuous on Q x D¥, ¢(F, @) is
& x §F-measurable and we can consider the integral

"(wy®) = [ [r(F @)iuds.

Tot M and A represent the sets of all distributions on 2 and T* respec-
tively. M and A are then compact with regard to the ordinary topology
by Lemma 8, and we obtain from Iemma 7 the

THEOREM I v(p,8) is a continuous function on a compact space M x A.

As a consequence of this theorem we have

THEOREM 11 1\,.131){ r(@, 8) and La{iAn r(m, 8) are continuous functions

on A and M respectively.

*) The ordinary topology means the topology by the ordinary convergence.
) Cf. J. Ville’s note “ Sur la théorie générale des jewx ol intervient Phabilité des joueurs”
in E. Borel “ Traité du caleul des probabilités et de ses applications, Tome IV, Facse. I1.”
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So, there exist w, and 8, such that
Min Max r(m, 8) = (s, 8)
8ed meM

Such a §, is called a minimax solution. We shall see in the following
that a minimax solution is, in a sense, an optium solution to the decision
problem.

It is also an immediate consequence of THEOREM I that for an ar-
bitrary weM there exists a 8, €A, which minimizes (g, 8). Such a &, is
called a Bayes solution velative to wu. -

THEOREM III For any a priori distribution p there exists «  Bayes
solution 8, relative to p.

THEOREM 1V For any Bayes solution 8, velative to p we have

S {@usr(py @) = 1\91). r(p, @)} = 1.

THEOREM V' Let {8,} be a sequence of Bayes solutions corresponding
to @ sequence. of a priori distributions {m.}, each 3, being Bayes solution ve-
lative to an @ priovi distribution p,. Let, further, {8,} converge to a distri-
bution 8,. Then 8, is also a Bayes solution relative to some a priori dist-
ribution. That s, the limit distribution of « sequence of Bayes solutions is
also a Bayes solution. _

Proof As M is compact, we can select a convergent subsequence {u, }
from {p,}. We denote its limit by u. Now, let 3, be a Bayes solution re-
lative to p and assume that '

')‘(/l-, 80) - l'.(l") 8») = "7 > 0.

Then, as (g, 8..) = (@, 8,) (1’ — o), we have for an arbitrary posi-

tive number & '
(s Su) > v(py 8y) — E=1(p, 8,) + 9 — €
taking n' sufficiently large.
On the other hand, for a sufficiently large #' and an appropriate &
it holds
r(py 8,) > v(pur, 8) — €
Thus we have
‘ (o 84) > (o, 8) + 7 — 28,
When we take € such as 5 > 2€, then we have
(s 80) > (s, 8),
which contradicts the fact that 8, is a Bayes solution rclative to p,,. Hence
r(py &) — r(py8,)=79=0
and 8, is also a Bayes solution relative to pu.
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When Max Msin r(p, 8) = r(\, 8,), we call X a least favorable distribu-
" .

tion. Then we have clearly
THEOREM VI There exists a least favorable distribution.
THEOREM VII There exists a Bayes solution velative to every least
Savorable distribution, satisfying

ry = +(F, 8,) = f,-(F »)db,

Jor all ¥ in Q, where v, denotes the value of Max Mm r(py 8).

Proof ILet € be an arbitrary positive number Tet Q2. .. , 2, bo
subsets of & with

Q=9+ +Q,, Q4 ~Q9=0 (4 =%+3j)
such that for each 4 it holds
|r(F, @) —v(F,p)| <& for F, F'eQ),
umformly in @. Further, let ,, ... , D, be subsets of T* with
=P+ -+ Dy, DA~Ty=0 (i=Fj)
such that for each 4 it holds

[r(F, @) —r(F,@')| <&  for @, @',
uniformly in F.
Take arbitrary elements F,,..... s o and @y, ... »@n out of Q,,..... , 0,
and 9,,. ... , D, respectively, and put

= Max Min 2 El"'(EJ q).l)
3] ¢g t=1

where (&)= (&,...... ,E,) 1s restricted to satisfy & + - + £, =1and & =0
(i=1,.... m) Then the matrix

— (£, @) v, —r(F,@)......... v, — v (Fy, @) \
1 — (£, 9,) r—r(Fp, @) r, — r(F, @.)
- "'(Fms q)l) T - "(Fm, 7)2) -------- T — "'(‘Fm) q)m)/

satisfies the hypothesis of Lemma 9, consequently, there exists a () =
(M. , M) satisfying the above condition, such that

n=SrF ezl i=1.,m

=1
As it is clear that v, + & =, we have

To + 8—2—2T(E7¢1)’7J t=1,... y M

=
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therefore, when &; denotes distribution on ©* which gives to the points
Doy , @, the masses 7,,..... , M, Tespectively, we have
vy + E=r(F;, &) 1=1,....,m
From this inequalities we obtain
o+ 26 =r(F, &)
for all ' in Q. Now, let & be a limit point of {8} when & — 0, then
1 = r(F,8)
and consequently, for any least favorable distribution A
‘ to Z (X 8) = (N 8) =1,

where 8, denotes a Bayes solution relative to .
THEOREM VIII We have

M;in Max ¢ (p, 8) = Max N.Ein r(p, 8).
" ®
Proof It holds clearly
*) M:'.n Max r(u, 8) = Max L{in 1(p, 8).
" "
Now, let & be a Bayes solution such that

r(F, &) < for all F in Q.
Then, for an aribitrary distributibution ¢ on Q we have

r(p, &) < 1,

Max r(p, 8) <1,
M :

therefore

which means
) Min Max 1 (4, 8) < 7,
®
Combining (¥) with (¥) we have
L{in Max r(u, 8) = Max Msinr(,u,, 3).
" "
THEOREM IX Let N be an arbitrary least favorable distribution and 8,

an arbitrary minimaz solution. Then (A, 8,) s a saddle pomt of r(p, 8),
1. €., Maxz(p., &) = (N, §,y), Mm'r A 8) =r(\ ).

Proof As
Msin r(\, 8) = 7, = Max (g, $,)
I’
we have
(A 8) = Max v (p, §) = M‘in r(X, 8) = (), 9)
. [ od
and
r(% &) 2 Min(h, 3) = Maxr(s, &) Z (1 &).
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This means. (A, §)) is a saddle point of +(g, 8).

From this proof follows obviously

r(A &) =1y = Min (X, d)

therefore, we have

THEOREM X Any minimaez solution is a Bm/es solutwn relative to
every least favorable distribution.

From this theorem and THEOREM IV we obtain the

THEOREM XI For any least ﬁwomblc distribution N and an _/ mini-
maz solution 8, we have

St @o; (X, @) = Mnn(k,q)) = 1.
THEOREM XI1I For any minimaz solution 8, we haw
v(F,8,) =, for all I in Q "‘
and conversely, if 8, is a distribution on T* such that v(F, 8,) = v, for all F,
then 8, s @ minimaxz solution.

Proof Let 8, be a minimax solution. If (Fo, &) > r, for a point K,
then there exists an open set ®, at each point of which r(F, &) > v, holds.
Let x be an a priori distribution such that u(e)=1. Then we have
r(p, 8) > 1, =r(\, §), where N is a least favorable distribution. This,
however, contradicts the fact, that (A, 3,) is a saddle point. Therefore we
have

r(F,8)<r, forall Fin Q.
Conversely, assume that r(F, &) < r, holds. Then it holds
Max'l(,u.,23)<¢0
As 1y = Min Max r(p, 8), we have Max r(p, &) = #,, which means that 8,

is & minimax solutlon -
As an immediate consequence of th1s theorem we have
THEOREM XIII A wnecessary and sufficient condition that a decision
Sfunction 8, is @ minimax solution is that for any decision function & we have
r(F,d ) < Max') (F, 8)
Jor all F.
From THEOREM X and the proof of ’l‘HFORLM VI follows tho
THEOREM XIV For an arbitrary positive number & let Dy, ... , D
be subsets of D* with

D¥=D+ -+ Dy, T ~P;=0 (t.%7)
such that for each 4 it holds .
r(F, @) —r(F, @) | <&  for ¢, @D,
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uniformly in F, and let ¢,,. ... s @ be arbitrary elements out of ,, ..., D,
respectively. Then there exists ¢ mized decision function 8 with 8(e,,
®,) = 1, such that it holds
r(F, 8) — v(F, 8,) | < € uniformly in I'

where 8, denotes a minimaz solution, S ;

The way to determinate the masses 7,,...... , M2, which are to be given
by & to the points @,,..... , @, respectively, can also be seen in that proof
of THEOREM VI. Generally, for any 8 there exists 9 = (ny, ... , 5,) with
2"! =Tand ,=00G=1,...... , 1) such that it holds

[r(F,8) — 2, r(F, @)m| < €&

uniformly in ¥. Thus, up to the magnltude_ of & we have only to consider
a finite number of decision functions.

THEOREM XV For any least fafvomble distribution and any mini-
maz solution &, it holds
*) r(F, &) =7, for all F in Q,,

where L, represents the set of all points F' in Q such that any open set con-
taining F has a positive N-measure, and conversely if (*) holds for a least
Javorahble distribution N, then &, is a minimaz solution.

Proof For a minimax solution 8,, we have

r(F,8) =1, for all F in .
Now, assume v(F,, 8,) <, for a point F, in 0,. Then there exists an open

set ® contained in Q,, such that at cach point F of @ we have r(F,§) <

7y and .
fr(F, 8)d\ <1~0fdx

/ (1, 8,)d\ < v, f dn
Q-w Q-w

1y = 1A, &) < 1y
which is a contradiction. Therefore
r(F,8) =1  in O,
The second part of the theorem is obvious.

A decision function &* is called uniformly better than a decision func-
tion. 8, when we have

r(F,8*) <r(F,8) forall Fin Q

On the other hand

Hence we have
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and at least for one point F
r(Fy, &%) <r(F,3)

and a decision function &* admissible, when there is no decision function,
which is uniformly better than ¢*. A class of decision functions C is called
complete, relative to ¥, when for any & of ©*, which is not in C, there
exists a &* in C, which is uniformly better than 8. Then we have

THEOREM XVI The class of all the Bayes solutions is complete ve-
lative to D¥, ' '

Proof Let 8, be an arbitrary decision function which is not a Bayes
solution, and set . v
W (F,9) = r(F,p) — (,8,).
Then r*(F, @) is a continuous function of (¥, @). Therefore, we have a
minimax solution &, with respect to r*(F, @), i.e., a decision function &,
such that

M%x 1 *¥(F, §) < ng 1*(F, 8)
for any 8. We have clearly +*(F,8,) = 0, consequently
»*(F,8)<0 for all ¥ in Q
e,
r(F, &) < v(F, 8,) for all F in Q.
Now, there is at least one point F, such that
r(F,, &) < r(F,8,)
For, if r(F, §,))=r(F,d,), then for any least favorable distribution A we
would have
r(X &) =r(7, )

against our hypothesis that &, is not a Bayes solution.

5 Consideration of the cost

Now, we take into account of the cost of the experiment when we adopt
a decision function @. This cost depends also upon the sample = obtained.
Therefore, the cost is a function of @ and z, which we denote by c(=z, @).
The upper bound of the admissible cost is usually preassigned before be-
ginning the experiment. There are two ways of preassigning the cost.
The one limits ¢{x, @) for each z, and the other limits the average of
¢(z, ). In both cases we make the following assumption
(4.C.I) The cost function c¢(z, @) is a continuous function of ¢ for
each z.
" In the first case, a constant K is preassigned such that for each z
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¢(z, ¢) < K. Then the class D** of decision functions satisfying ¢(z, 9) < K
for all z, is a closed subset of ©* consequontly D** is a compact, separable
(metric) space. Therefore, considering D** instead of D¥, the previous
theory is applicable, and we see the existence of an optimum solution also
in this restricted case.

In the second case we make further two assumptions.

(4.C.II) The cost function c¢(x,®) as a function of @ is uniformly
continuous with respect to . ‘

(A.C.III) The cost function ¢(z, @) is a measurable function of z.
According to these assumptions the average of cost with respect to the

distribution F, f ¢(z, @)dF, is defined and is a continuous function of @.
R
In this case the limit, K of this average is supposed as pressigned. Then
the class of decision functions, satisfying f ¢(z, 9)dF < K for all F, forms
R

a compact, separable (metric) space, and again our theory may be applied.

6 The case where (Q consists of a finite number of distributions

In this section we shall show under reasonable conditions that when
we are concernod with a finite number of distributions we can make the
risk as small as desired by making the sample size sufficiently large, and
at the same time give a formula to determinate the sample-size and a
method to obtain the decision function explicitly, so as to make the risk
smaller than the preassigned value. The case, when Q consist of two dis-
tributions, will be treated in more detail, and we shall obtain a further
results.

Definition For any pair of distributions F,, F, we call the number
p=p(F, F) = [ Vp(@) Vps(a) dm

the affinity between F, and F,, where p,(x) and p,(x) denote the density
functions of F, and F, respectively.

Corollary 6
=1  when ||F,— F,||=0

p(Fan){ <1  when |F, - F|>0

and ‘ , , .
o(F, F) <p(F,F) when |F,— B> |F, - F|
This Corollary follows immediately from
¥, — B’ =2—2p(F, F,) .
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: , 1 _(z-a? 1 _(@-ant
- For example, when p,(z) = e ¥ p(x)= 207 e
‘ ‘ N2 N2 a'
g e - (et ' m -
A 0O T " o _ o B
have p = ¢ '@+ and when p,(m) = e, py(m) =% e

ot + o m! m!

(2 A—
-\ Veaa’

THEOREM XVII® Let p be the affinity between two distinct distri-
butions F, and F,. Let & be an arbitrary postive number and L an integer
such that p* < &  When we put

B = {(z, ,3); (). pr() Z pa(2) - pa(m) |
‘in the direct product space R® and E, = Ef, then we have
| Fo(B)>1 ¢,
F®(B)>1-¢
wheve Fy® and F,® represent the extended distributions on R® of F, and F,,
respectively.
Proof “We have clearly

F®(B) = Llpl(xl-) o pum)dm .. dm =1 — A’pl(xl)...pl(xk)dm .. dm

=>1- /;’Mpl(wl)...pl(a;,c)pz(xz)...pz(xk) dm ... dm

=1- /;WO ND(®) Py () Po(@2) . py(@i) dm ... dm

—1— ([ ~pi@p.() dm)

=1—-p">1-—¢&
and similarly
F®(E)>1 - &
Now, let Q consist of s distinet distributions F,,..., F;, and for each
4 (1 =1,...,8) let d; denote the correct decision when F is the true distri-
bution and assume W(F, d;) =0. Let & be an arbitrary positive num-
ber and & an integer such that (s — 1)p* < & where p = Max p(F,, F}).
‘ G,
‘ (@)
Further, put B
By ={(z, )i pi(®) - pu(m) Z py(w) - pyla) |
(Q’#:Jy ’l'/,j=1,.,8) I

*) As to this theorem cf. also 8. Kakutani, On Equiralence of Infinite Product Measure,
Ann. Math. vol. 49 (1948). . ’

.
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and o B ' f
| B = 1)

Then for every i wo have from the above theorem

FO(E;)>1 - g,
consequently .
F®(E)=1— F®(E)
=1-HK®U E)
J==t
= 1 -S> F®(E
ixj
. >1—-(s—1)p>1—8 » .
All E; are clearly disjoint with each other, and are measurable. . Now, put
@(z) = d, when zel, (i.=1, ,s) i e
and the value of ¢(w) is defined arpitarily for we (R‘” j ‘E}) so far - as
i=1 .

the thus obtained @(z) is measurable. Then thl‘-} o(2) makes the risk
smaller than & In fact, we have

r(Fp) = [, WE, ()

AN

=] dF® <e
: e
where K, = R — > E;. Thus we have the
- od=1

THEOREM XVIII® When Q consists of a finite number of distinct
distributions we can make the risk smaller than the aribitarily preassigned
value by taking the sample-size and a decision function as mentioned above.

Thus a minimax solution makes clearly the risk smaller than the same
preassigued value. Of course, we assume here thai a priori distributions
on R® {F®} are the same as on (.

Now, for the decision function @, the property

(B, @)= =r(F, )
is desirable. For the fulfilliment of this condition the decision tunction

*) As to this theorem cf. also R. von Mises, On the Problem of Testing Hypotheses, Ann.
Math. Stat. vol. 14 (1943) and H. Kudo, On the “ Power” Functions, Research N[emmrs of
the Institute oi Statistical Mathematics vol. 4 (1948) (in Japanese)’ :
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obtained above must be modified. In the following we shall give a deci-
sion function which satisfies this condition. in the case where Q consists
of two distinet continuous distributions F, and F,.

For any non-negative number y put
By ={(m, ym);pu(m) - pu(m) < ypa(z)...pal) }
Then we have clearly
E,cE, when <«
and when we put g(y) = W(F,,d,) F,(E,), g(y) is a monotone-increasing
continuous function of ¢ such that g(0) =0, li)n: g(y) = W(F,,d,). On

the other hand, when we put h(y) = W(F,,d,) F,(E/), h(y) is a monotone-
decreasing continuous function such that h(0) = W(F,,d,), lim h(y) = 0.
r->eo

Therefore, there exists a positive number v, such that g(v,) = h(r,), provided
that both W(F,,d.) and W(F,,d,) are positive. (The case where one of
W(F,,d;) and W(F,,d,) is zero is trivial.) Then put

‘ ' @)(z) = d, when z€ E/S

Ppy(2) = d, when z€ E,

and we have :
(B, @) =r(F,2) (= g(1) = hin) <p)
This @, is a minimax solution in the sirict sense, i.e., M;l:n N{Fax r(F, @)
= r(F, @) = v(F3, ). (@, is, further, a minimax solution in the general
sense, i. e., Msin Mf.x 7(p, 8) =Ms'xLx r{p, @,).*) To show that, for an arbitrary
decision function @ put '

A= {a: = (2y,..., %) ; P(2) = dl},
B= {x = (2,..., %) ;@ (z) = dg}

Here wo, of course, assume d, = d,. If ¢(F, @) = r(Fy, @) > v(F,, 9),
v(F,, @), then we would have

Lop,(wl).upl(mk)dm . dm> ./;p,(xl)...pl(mk)dm‘..‘dm
and .
fcpz(;a,) - pa(m)dm ... dm > fp,(:vl)...p,(xk)dm ..dm
) By, 4

¥ of, the Addendum below.
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therefore,
f (=) ... py(me)dm ... dm > f Cpu() . pu@)dm . dm
Byy-B B-Ly,

and
./z;,” Pa(2)) ... pa(mi)dm .. dm>f c102(.01) .pa(wp)dm ... dm

As E, —BoA—-E, B, —AS5B—E, Wehave

/a,“ Yo o (2) ... oz )dm ... dm > fA_ c'yopz(xl)...pz(xk)dm ...dm

>/ pi(2) ... p(p)dm .. dm>f cpl(:v1 L pz)dm ... dm
Yo

which contradicts

f,;, o () pa(m)dm . dm < f FACE puz)dm .. dm.

o
Therefore, at least one of the two values r (Fu @) and r(F;, @) is equal

or greater than r(F,, @,) = v(F;, @), which means that @,(z) is a minimax
solution in the strict sense.

Addendum

In the following we shall show that. under certain conditions mixed
decision functions may be eliminated from statistical decision rules.

THEOREM XIX When each F of Q is atomless, and when for
any finite number of distributions F,..., F, from Q there exists only a finite
number of decisions, which may be made concerning F,,..., F,, then for any
mized decision function & there exists a (pure) decision function @(z) such
that

r(F,p) =r(F,8)  for all F in (.

Proof By THEOREM XIV there exist for any positive € a finite

number of decision functions @,(z), ..., @.(z) and a real vector(n) = (#,,...,

n,.) with 2’7" =1and 7, =0 (k=1,...,n), such that it holds

k=1
n
r(F,8) — S1r(F, pon.| < e
k=1
"% As to this Addendum cf. A. Dvoretzky, A. Wald and J. Wolfowitz, Elimination in
Certain Statistical Decision Procedures and Zcro-Sum {Two-Person Games, Ann. Math. Stat.
Vol. 22 (1951).
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uniformly in F. Let {F,, ..., F,} be a finite subset of Q such that for any
F there exists F; with

|»(F, @) —r(F,p)| <e  uniformly in ¢
and we have clearly

n

|"‘(F’8) - ZT(FH ¢k)’7kl <2€

k=1
Now, for any measurable set E in R put

pulB) = [ W(E, pu(x))dF,
(t=1,..,474 k=1,..,n)
Then all p; are atomless, therefore, by a result of Dvoretzky, Wald
and Wolfowitz*) there exist subsets S, ..., S, of B such that
pir(S5) = nypan(R) i=1,..,L,j=1,..,n k=1,..,n

and S;~8;=0 (¢ =9).
Consequently we have

Em-/m(R) = Ey‘lk(sk) = Zﬁk W(R; ¢k(x) )dFi

k k k=1

Let D(F,,...,F,) = {d,, ...d,} be all decisions concerning {F, ..., F}}
and My, = {z;@(z)=d;} (j=1,..,mk=1,..,n). Then

n

2 r(Fe, Pi)ne = ﬁ"lk /1; W(F:, px(z))dF;

k=1 k=1
=>> W(F;, d,)) F (S~ M)
k=1 j=1 .
e 2 W(]"‘, d.’) 2 .F"(Sk —~ J"Lk)
j=1 k=1
(1=1,..,10)
Putting > (S ~M,;) = N,, we have
k
S r(F pom = S W(E, d,) F(N))
k=1 ’ j=1
Therofore, when we put
@u(z) = d; for zeN, (j=1,...,m)
we have ‘
ET(Fl;q)k)nk:T(Ftywo) ('i=1!$l)

k=1

% A, Dvoretzky, A. Wald and J. Wolfowitz, Relations amony certain Ranges of Veclor
Measures, Lemma 2, Pacific J. Math. Vol. 1.



ON THE THEORY OF STATISTICAL DECISION FUNCTIONS 35

Consequently, for any F in Q there exists an F; in {F}, ...F,} such that
Ir(F, 8) — r(F, @) | < 2¢
Hence we have
|r(F,8) — r(F,@,)| <3¢  for all F in Q.
As e may be taken arbitrarily small, Q is separable and ®* is compact,
there exists a decision function @ such that
r(F,8) = rv(F, @) for all ¥ in Q.

Added in proof. After sending this paper to the printer I read the
interesting paper of A. Wald and J. Wolfowitz, Two Methods of Randomsi-
zation in Statistics and the Theory of Games, Annals of Mathematics, May,
1951, which deals the equivalence between Wald’s randomized decision
function and our mixed one.

Institute of Statistical Mathematics



CORRECTIONS TO
“ON THE THEORY OF STATISTICAL DECISION FUNCTIONS ”

KAMEO MATUSITA

The following correction should be made to the above-mentioned
paper (this Annals, Vol. 3, No. 1 (1951), 17-35).

i) The proof of Corollary 4 should be replaced by the following :
For an arbitrary open set e in D, let e=Ue, where e, are the
neighborhoods with their closures é; contained in e. Then we have

{#; p(x) € e} = U Gl N (@ pua) €a) € R.
ny=1 n=n,
This proves the corollary.

ii) The passage from the line 3 to the line 6 on the page 20, “Then
...is a closed set” should be omitted. Though it is not wrong, it is
liable to raise misunderstanding.

iii) The statement in Lemma 3, “~(F, ¢) is a continuous function on
2XD and satisfies”, should be replaced by “When F,—F @(%)—o(x)

(t—o0), then we have r(F), p)—r(F, ¢) (i—c0) and”. The proof re-
mains available.

iv) The passages from the line 9 to the line 29 on the page 21,
“Lemma 4...is a compact, metric and separable space”, should be re-
placed by the following:

LEMMA 4. As a function of F in 2 r(F, ¢) is uniformly continu-
ous with respect to ¢.

PrOOF. As W(F, d) is continuous on the compact space 2x D, for
any positive number ¢ there exists a positive number & such that

[|F\—Fy|| <6 — |W(Fy, d)— W(F,, d)|<e for all d.
Since ||F,—F}||<d implies
|[F\(E)—Fy(E)|<2||F,—Fy|| <25

for any set E of &, we have
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I o) =1y, o) =) W, ola) dF,—| W(F, o(2))dF,

<\ (W(F, (@)~ W, o(z)) aF,

+ S\\R W(F,, o(x)) sz—SRW(Fz, o(x)) dF,

<e424.

This proves the lemma.
Now we introduce a metric in D.

DEFINITION. Let ¢;, ¢, be two elements of ©. We define the dis-
tance pg between ¢, ¢, by

ea(e1, soz)=g}§3< [7(F, o) —7(F, ¢5)| .

Clearly we have pg(p;, ¢:)<1. Let D* denote the metric space obtained
from D, in identifying the elements between which the pg distances
are zero, and metrized by pg.

LEMMA 4"”. D* is a conditionally compact space.

PROOF. Let ¢ be an arbitrarily chosen positivia number. Then,
according to Lemma 4’, every F' has a neighborhood, U(F'), such that

F' ¢ UF) = |r(F, o)—r(F", o) <e  for all o.

As Qis cdmpact, £ can be covered by a finite number of such neighbor-
hoods, i.e.,

Q=UF)"UF)~...~UF) .
Now put

P'(901, 902)=¥2?g§ [r(F, o) —1(F;, @)l -

This o'(¢1, ¢2) gives also a metric in © and satisfies 0=p'(¢;, p2)<1. We
~denote by ¥’ the metric space obtained from ® by this o’. Then, an
element of ¥, say ¢, is represented by a system of numbers {r(F}, ¢),
r(Fy, @), -+, r(Fy, ¢)}. Taking into account of the fact 0=r(F, ¢)<1,
we see immediately that ®’ is conditionally compact. Now it holds

0= pp(01, ©2)—0'(¢p1, ) <2

from which follows the lemma.

From Lemma 3 follows immediately
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LEMMA 5. When ¢ (x)—>¢(x) (n—o0), r(F, ¢,)—>r(F, ¢) uniformly
wm F.

Now, let 7(©*) be the metric space of all fundamental sequences
in ®*. The distance between two fundamental sequences ¢*={¢.u},
o*={¢:,} is, as usual, given by

pled™, ¢2*)=lniﬂ @1y Pom)

Then, 7(D*) is complete and totally bounded, consequently compact. D*
is clearly embedded in y(®%*), the closure of D%, D*is y(D*) and r(F, ¢)
defined on 2xD* is continuously extended on 2xy(D*). Therefore,
we can extend the notion of decision function to the whole space y(D*).
The real meaning of an element of y(®*) not belonging to D*, say ¢*,
consists in the fact, that for any positive number ¢ there exists a de-
cision function ¢ in ©* such that

|r(F, o*)—r(F, ¢)|<e for all F.

When D* is compact from the beginning, as in the case where the
sample space R is a countable set, we have, of course, D*=y(D*). In
the following we denote y(D*) merely by D*. D* is, thus, a compact
metric space.

v) The passage from the line 6 from the bottom to the line 5 from
the bottom on the page 22, “and are...from Lemma 7 the”, should be
replaced by the following :

“We define the distances in M and A, respectively, as follows:

ot )= n}sax (21, 0)—7 (22, 0)]
(0, d;) =max I?"(‘u, 51)_T(F! 52)[ .
©

Then we have for n—oo
t,— ¢ (in the ordinary sense) — p(u,, ¢) — 0
0,—06 (in the ordinary sense) — p(8,, 6) —0 .

Thus, M and A are compact metric spaces. We obtain immediately the
following ”.

vi) In Theorem IV (g, ¢) means S r(E, ¢)dpy.
2

vii) In the line 2 from the bottom on the page 30, the sign “ ="
should be replaced by “ > ”.
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The following correction should be made to the above-mentioned paper.
1 The proof of Corollary 4 should be replaced by the following :
For an arbitrary open set ¢ in D, let ¢ = U ¢, where ¢ are the

neighborhdoda with their closures & contained in ¢. Then we have

fz;9(x) €ef = U U N iz;ou(e)€al €8

Ngml nwmi,

This proves the corollary.

2 The passage from the line 3 to the line 6 on the page 20, Then
...... is a closed set” should be omitted. Though it is not wrong, it is
liable to raise misunderstanding.

8 The statement in Lemma 3, “r(F, @) is a continuous function on
Q) x D and satisfies 7, should be replaced by “ When F; — F, @,(z) — @(z)
(1 — o), then we have r(F,, @) —r(F,9) (i—> o) and”. The proof
remains available.

4 The passages from the line 9 to the line 29 on the page 21,
“Lemma 4......is a compact, metric and separable space”, should be
replaced by the following :

Lemma 4§ As a function of F in O r(F @) 18 uniformly continuous
with respect to @.

Proof As W(F,d) is continuous on the compact space {1 x D, for
any positive number & there exists a positive number & such that

[ F, — F|| <8 |W(F,d) — W(F,d)|<¢& for all d.
Since [| F; — F3}| < & implies :
F(B) - B(B)| 2] F - B[ <2
for any set K of &, we have

l'r(lﬂl) q') - 'I'(.F;, ¢) 1 =

[ WE p@)ak; — [ W(E g(@)ak,
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<' j (W(E, p(x)) — W(F,,cp(x))zdF {

o | W o ek, — [ W p)er

< &4 28
This proves the lemma. '
Now we introduce a metric in 2.
Definition Let @, @, be two elements of ©. We define the distance
pa between @, ¢. by

(P P2) = mxlr(F,%) — r(F, P

Clearly- we have poi@, @) <1. Let D* denote the metric space obtained
from T, in identifying the elements between which the pp distances are
zero, and metrized by ps.

Lemma 4 T* 48 a conditionally compaet apace.

Proof Tet & be an arbitrarily chosen positive number. Then, accord-
ing to Lomma 4, every F has a neighborhood, U(F), such that

F € U(F) »\r(F, @) — r(F,9)| < & for all ¢.

As Q is compact, 2 can be covered by a.finite number of such neighbor-
hoods, i.e., :
A Q = U(F)~U(F,y~--~~U(F,)

Now put : '
P/ (o 9a) = max|v(Fy, p1) — 1(Fi, 94) |

Tlm p (®, ®,) gives also a metric in D and satisfies 0 < p/(@, @) < 1.
We denote by @ the metric space obtained from D by this p’. Then, an
element of ¥, say @, is represented by # systemn of numbers {r(F, @),
r(Fy @), ..., (Fy@)}. Taking into acecount of the fact 0 <r(F, @) <1,
we see immediately that ' is conditionally cempact. Now it holds

0< Po (P, ?,) — P (P, ?2) < _25

from which follows the lemma.

From Lemma 3 follows immediately : .

Lemma 5 When @,(2) — @(2) (n — o), r(F, @,) = (¥, @) uniformly
in F. ‘

Now, let v(D*) be the metric space of all fundamental sequences in
D*, 'The distance between. two fundamental sequences @ = {@.},

@.* = {9,,} is, as usual, given by
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p(e*, @,*) = lni,)T P(Prnr Pin)

Then, y(®*) is complete and totally bounded, consequently compact. T
is clearly embedded in y(D*), the closure of ¥, T* is (D*) and r(F, @)
defined on @ x T* is continuously extended on Q x o(T*). Therefore, we
can extend the notion of decision function to the whole space v(2*). The
real meaning of an element of y(2*) not belonging to T¥, say @*, consists
in the fact, that for any positive number & there exists a decision function
@ in * such that
lr(F, ¢%) —r(F,9)| <€ for all ¥
When 2* is compact from the beginning, as in the case where the sample
space R is a countable set, we have, of course, T = w(2*). In the follow-
ing we denote y(T*) merely by D*. D* is, thus, & compact metric space.
5 'The passage from the line 6 from the bottom to the line 5 from
the bottom on the page 22, “and are...... from Lemma 7 the”, should be
replaced by the following :
“We define the distances in M and A, respectively, as follows:

Pt ) = max|r(p, 8) — r(p,, 8)]
P(an 3;) = max|r(u, ) — r(m, ) |
m
Then we have for n — oo
g, — g (in the ordinary sense) —= p(p,, ) — 0
8, — 8 (in the ordinary sense) —- p(3,,6) =0
Thus, M and- A are compact metric spaces. We obtain immediately the
following ”
6 In Theorem 1V #(u, ) means j r (B, @)du.
o

-

7 In the line 2 from the bottom on the page 30 the sign “=" should
be replaced by “ > ”
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