On a Relation between Exponential Law and Poisson's Law

By Seiji Nabeya

(Received April 3, 1950)

Let

$$(1) X_1, X_2, \cdots$$

be a sequence of non-negative random variables independently distributed according to the same distribution function F(x). Let x be any positive number, and N_x be a random variable defined as follows:

(2)
$$N_{x} = \begin{cases} 0 & \text{if } X_{1} > x, \\ n & \text{if } X_{1} + X_{2} + \dots + X_{n} \leq x \\ & \text{and } X_{1} + X_{2} + \dots + X_{n+1} > x, \end{cases}$$

that is, N_x be the least non-negative integer such that $X_1 + X_2 + \cdots + X_{N_x+1} > x$.

If F(x) is the exponential distribution function with the mean μ , i. e.,

(3)
$$F(x) = \begin{cases} 0 & \text{for } x < 0, \\ \frac{1}{\mu} \int_0^x e^{-\frac{x}{\mu}} dx = 1 - e^{-\frac{x}{\mu}} & \text{for } x > 0, \end{cases}$$

then N_x is, as is known, distributed according to the Poisson's law with the mean x/μ .

In this paper we shall prove the converse of this fact.*)

Theorem. Let (1) be a sequence of non-negative independent random variables with the same distribution function F(x), and let N_x be defined as (2). If N_x is distributed according to the Poisson's law for every positive x, then F(x) is of exponential type (3).

Proof. First, the mean of N_x , existing by the assumption, is clearly a function defined for all x > 0, which we denote by f(x). Then it follows from the definition of N_x

(4)
$$P_{r}\{X_{1} + X_{2} + \dots + X_{n} \leq x\} = P_{r}\{N_{x} \geq n\}$$

$$= 1 - e^{-f(x)} \left\{ 1 + \frac{f(x)}{1!} + \frac{f^{2}(x)}{2!} + \dots + \frac{f^{i-1}(x)}{(n-1)!} \right\}.$$

Denoting the distribution function of $X_1 + X_2 + \cdots + X_n$ by $F_n(x)$, we have from (4)

^{*)} This problem was presented to the author by Mr. J. Ogawa.

$$(5) \quad F_n(x) = \begin{cases} 0 & \text{for } x < 0, \\ 1 - e^{-f(x)} \left\{ 1 + \frac{f(x)}{1!} + \frac{f^2(x)}{2!} + \dots + \frac{f^{n-1}(x)}{(n-1)!} \right\} & \text{for } x > 0. \end{cases}$$

In particular,

(6)
$$F(x) = F_1(x) = \begin{cases} 0 & \text{for } x < 0, \\ 1 - e^{-f(x)} & \text{for } x > 0. \end{cases}$$

Now, F(x) being non-decreasing and $F(+\infty) = 1$, so f(x) is also non-decreasing and

$$(7) f(+\infty) = +\infty.$$

On the other hand, since

$$P_r\{X_1 + X_2 = 0\} = P_r\{X_1 = 0\}P_r\{X_2 = 0\},$$

we have

$$F_2(+0) = F^2(+0),$$

$$1 - e^{-f(+0)} \{1 + f(+0)\} = \{1 - e^{-f(+0)}\}^2,$$

from which it follows

$$(8) f(+0) = 0.$$

Let $\varphi_n(t)$ be the moment-generating function corresponding to $F_n(x)$. Calculating the value of $\varphi_n(-t)$ for a fixed negative argument -t, where t>0, and taking into account of (5), (7) and (8), we have

(9)
$$\varphi_{n}(-t) = \int_{0}^{\infty} e^{-tx} dF_{n}(x)$$

$$= \left[e^{-tx} F_{n}(x) \right]_{0}^{\infty} + t \int_{0}^{\infty} e^{-tx} F_{n}(x) dx$$

$$= t \int_{0}^{\infty} e^{-tx} F_{n}(x) dx$$

$$= 1 - t \int_{0}^{\infty} e^{-tx - f(x)}(x) \sum_{k=0}^{n-1} \frac{f^{k}(x)}{k!} dx.$$

In particular, putting $\varphi(-t) = \varphi_1(-t)$, for n = 1,

(10)
$$\varphi(-t) = \varphi_1(-t) = 1 - t \int_0^\infty e^{-tx - f(x)} dx,$$

$$0 < \varphi(-t) < 1,$$

and

(11)
$$\varphi_n(-t) = \varphi^n(-t).$$

Then, from (9) and (11) it follows

(12)
$$\varphi^{n}(-t) = 1 - t \int_{0}^{\infty} e^{-tx - f(x)} \sum_{k=0}^{n-1} \frac{f^{k}(x)}{k!} dx.$$

Now, let u be an arbitrary complex number such that |u| < 1. By multiplying both sides of (12) by u^{n-1} for $n = 1, 2, \dots$, and adding the obtained results side by side, we have

(13)
$$\frac{\varphi(-t)}{1 - u\varphi(-t)} = \frac{1}{1 - u} - \frac{t}{1 - u} \int_0^\infty e^{-tx - f(x) + uf(x)} dx,$$
$$\int_0^\infty \frac{t}{1 - \varphi(-t)} e^{-tx - f(x) + uf(x)} dx = \frac{1}{1 - u\varphi(-t)}.$$

In this last expression put u = 0 and we get

$$\int_0^\infty g(x)\ dx = 1,$$

where

(14)
$$g(x) = \frac{t}{1 - \varphi(-t)} e^{-tx - f(x)} > 0 \quad \text{for } x \ge 0.$$

Hence, we can regard g(x) as the probability density of a non-negative random variable, say X. Then (13) can be rewritten in the form

(15)
$$\int_0^\infty g(x) e^{u f(x)} dx = \frac{1}{1 - u \varphi(-t)}.$$

The left hand side of this equality is the moment-generating function of f(X), while the right hand side is that of the exponential distribution with the mean $\varphi(-t)$. Therefore, f(X) must be distributed according to this law, and f(x) takes all positive values when x runs over all positive values, that is, the function f(x) is free from discontinuities.

On the other hand we have f(x) < f(x') for x < x'. Otherwise, we should have from f(x) = f(x') and (14)

$$P_r\{f(X)=f(x)\} \ge P_r\{x \le X \le x'\} = \int_x^{x'} g(x) dx > 0,$$

which is impossible because f(X) is a random variable with a continuous distribution function.

Therefore, the mapping $x \gtrsim f(x)$ defined on all positive values is one-to-one and continuous. Moreover f(x) is an absolutely continuous function of x. In fact, if E is a Borel set of Lebesgue measure 0, i.e., m(E) = 0, then we have from the above established one-to-one correspondence

$$0 = \int_{E} g(x) dx = \frac{1}{\varphi(-t)} \int_{\pi(E)} e^{-\frac{x}{\varphi(-t)}} dx,$$

which is impossible unless m(f(E)) = 0. Now, since

$$P_r\{X \leq x\} = P_r\{f(X) \leq f(x)\},$$

we have for x > 0,

(16)
$$\int_0^x g(x) dx = \frac{1}{\varphi(-t)} \int_0^{f(x)} e^{-\frac{x}{\varphi(-t)}} dx.$$

Differentiating both sides of (16) with respect to x, we obtain

(17)
$$g(x) = \frac{1}{\varphi(-t)} e^{-\frac{f(x)}{\varphi(-t)}} f'(x)$$

almost everywhere. From (14) and (17) we have

(18)
$$te^{-tx} = \frac{1 - \varphi(-t)}{\varphi(-t)} e^{-\frac{1 - \varphi(-t)}{\varphi(-t)} f(x)} f'(x).$$

Integrating both sides of (18) with respect to x from 0 to x, we have for x > 0

$$1 - e^{-tx} = 1 - e^{-\frac{1-\varphi(-t)}{\varphi(-t)}f(x)},$$

from which we get

(19)
$$f(x) = \frac{t\varphi(-t)}{1 - \varphi(-t)} x = \frac{x}{\mu}$$

where

$$\mu = \frac{1 - \varphi(-t)}{t\varphi(-t)}.$$

Substituting (19) in (6), we have the desired result.

Institute of Statistical Mathematics