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Let
(1) X, X,
be a sequence of non-negative random variables independently distributed
according to the same distribution function F(z). Let « be any positive
number, and N, be a random variable defined as follows:
0 if X, > =,
(2) N=dn if X;+X+ - +X, <2
and X, + X, 4+ - + X, > 7,
that is, N, be the least non-negative integer such that X, + X, +------ +
XN1+1 > @.
If F(z) is the exponential distribution function with the mean g, i.e.,

: : - (0 for = <0,
(3) . Bl=) = lfze'zdx=1——e'; for z> 0,
K Yo
then N, is, as is known, distributed according to the Poisson’s law with
the mean /.

In this paper we shall prove the converse of this fact.™>

Theorem. Let (1) be a sequence of non-negative independent random
variables with the same distribution function F(xz), and let N, be defined
as (2). If N, is distributed according to the Poisson’s law for every posmw
z, then F(x) is of exponential type (3).

Proof. Tirst, the mean of N,, existing by the assumption, is clearly
a function defined for all > 0, which we denote by f(»). Then it follows
from the definition of N,

4) PiX.+ Xt -+ Xo=al=PiN.=n}
=1 e-ﬂz){l +f§i!) +f_;_a'7)_ 4 e+ an—(:_;_’}

Denoting the distribution function of X, + X, + -+ + X, by F,(z),
we have from (4)

*) This problem was presented to the author by Mr. J. Ogawa.
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0 . , for <0,

B) B} =1y _ nfy L 1(2) o (@) ()
— o~ 1 AT o - P
i R T +('n,—1)!} for > 0.
In particular,
. 0 for 2 <0,

6 F = I (2) =
(5) (@)= Fale) JLl—e"‘”‘) for x> 0.

Now, F(x) being non-decreasing and F(+ co) =1, so f(x) is also
non-decreasing and
(7 S+ 00) = + oo.
On. the other hand, since
PiX,+ X, =0} = R{XI =0} {X, = 0},
we have | ’
Fy(+ 0) = F*(+ 0),
1— e 0L 4 f(+ 0)} = {1 — e70},
from which it follows )
(8) ‘ F(+0)=0.
Let @,(t) be the moment-generating function corresponding to F,(z).

Calculating the value of @,(—t) for a fixed negative argument — ¢, where
i> 0, and taking into account of (5), (7) and (8), we have

(9) pu(— ) = [ e dEy(x)
0 .
= [ F,,,(a:)]m + tf‘”e-w P\ (w) do
= 0 0
= tfwe"'” F,(x) dz
1)

co n=1 £k
B a1
| SRR ¥
In particular, putting @(—1t) = @,(—¢), for n =1,
p(= D) =g (=) =1 =t [ ooy,
(10) ’
and

(11) Pu(—t) = @"(—1t).

Then, from (9) and (11) it follows
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(12) P (—t)=1-— tfwe"”“‘ﬂ”) gﬁ’%—z da.

Now, let u be an arbitrary complex number such that |u| <1. By
multiplying both sides of (12) by u"~* for n =1,2,.--. , and adding the
obtained results side by side, we have

13 (—' t) _ 1 _ t ]‘w —vz-j(:c)+u_7(m)d',
(13) wp(—t) 1w 1= !

f e—.‘x—](”)ﬁ“”](”) dw — 1 .
0 1—¢(—t) 1—up(—1)

In this last expression put » =0 and we get

[(r@ as =1,
0

where

: i
(14) 9(z) = ————e"TN >0 for = =0.
1—o(—1)
Hence, we can regard g(x) as the probability density of a non-negative
random variable, say X. Then (13) can be rewritten in the form

e 1
(15) f o) e = s

The left hand side of this equality is the moment-generating function of
F(X), while the right hand side is that of the exponential distribution
with the mean @(— t). Therefore, f(X) must be distributed according to
this law, and f(z) takes all positive values when  runs over all positive
values, that is, the function f(«) is free from discontinuities.

On the other hand we have f(z) < f(«') for » < 2. Otherwise, wo
should have from f(x) = f(2') and (14)

PAS(X) = (x)}>P{x<X<a/}—f”' (z) dz > 0,

whlch is impossible because f(X) is a random variable with a continuous
distribution function.

Therefore, the mapping 2 f(z) defined on all positive values is one-
to-one and continuous. Moreover f(z) is an absolutely continuous function .
of . In fact, if E is a Borel sot of Lebesgue measure 0, i.e., m(E) = 0,
" then we have from the above established one-to-one correspondence

0= f;g(m) dx, B q,(f 0) [ e,

KEY
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which is impossible unless m(f(E)) =0.
Now, since

P{X <2} = R{f(X) < f(»)},

we have for = > 0,

™ 1 5O _;%,)
(16) . /0 g(z) de = =0 £ e~ v=0 dx,

Difforentiating both sides of (16) with respect to z, we obtain
e
(17) 9(2) = s TR (2)
almost everywhere. From (14) and (17) we have

- 1-p(=t)
(15) e = LD T ),
Integrating both sides of (18) with respect to # from 0 to x, we have
for 2 > 0

1-¢(=t)
1—e™=1—¢ o- ,)f('c)

from which we get

m ﬂ;_t)_. -
(19) - Sf(w) = — (=) p
where
_1-9(=1)
T (=)

Substituting (19) in (6), we have the desired result.
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