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Recently A. Wald has developed an interesting theory on the statistical
inference.(') He remarks that the underlying assumptions of his theory
can be weakened in various ways though he did not do so for the sake of
simplicity. In this note I shall point out that the assumptions of his theory
can, from the mathematical point of view, be so generalized that the main

results of his theory remain true and are obtainable without increasing.

complexity. Tho theorcms and lemmas as in S. D. F. which can be proved
just in the same way, will be merely stated.

First, we stato our underlying assumptions.

A. I. Let a sample space R be a topological space satisfying the Jollow-
ing conditions :

i) Let S be the a-system (i.e., the completely additive system) generated
by all the open sets in R. There is defined a completely additive measure
m(E) of S. .

i) There exists a monotone-ascending sequence of bicompact subsets §3R,},
which converges to R, cach belonging to .

A. II. The set Q of distribution funcions on R, 1. e., measures of S with
the total measure 1, makes a compact regular topological space satisfying the
second axiom of countability, and each element x(E) of Q has the expression

m(E‘):fp(x,t)dm, Ec&

where we assume p(z, t) is continuous on the product space & x R.(?)

(1) A. Wald, Statistical Decision Functions which minimize the Mawvinwn Risk, Ann.
Math. 1945. This paper will be referred to as S.D.F.

(2) I shall give an example, where Q is not a clcsed subset in the (finite dimensional)
Euclidean space. )

Let R be the closed interval [0, 1] of real numbers. We consider a class @, of distribu-
tion functions whose density functions belong to the [,-class in [0,1] and introduce in Q,

a topology -in the following way. If u,(E) = f Ja() dm (n = 1,2, -.), where m means the

Lebesgue-measure, we define a convergence u, —> u (n —> ) by the mean convergence f, —> f
(n = ). Then, because of m(R) = 1,

| in(E) — w(E) | = IL(fn(x) — f@)) dm | = m(f..m ~f(x))”dm| ,

therefore, for any (Lebesgue-measurable) set E in R wu,(E) » u(E) when f, —»f Now, let
o be a compact subset of 0, with respect to this topology. Then o satisfies clearly our
assumptions.
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We denote by ¥ the o-system generated by all the open sets in Q.

A. IT1. There is defined a weight function W(z,2') on @ x Q, which
satisfies the following conditions :

i) W(z,2') is real-valued and

1= W(x,2')=0, W(=, z) == 0.

ii) & can be decomposed into the finite number of mutually disjoint

“subsets, each belonging to T, say
Q=09 +-+ Q, Q‘GE,

such that in each Q, x &; (1,5 =1,2,---, k) W(z,2') is continuous and
W(z,x') has @ continuous extension W, ,(z,2') on Q; x Q, with the property
that: if o' € Q; — Q;, then there exwists z” in Qy such that W(z, ')
= Wy(x, ") = W(x,2") Lolds for all x in Q, where 4 is the suffix of €
containing .

W(w,2') is, then, clearly measurable with respect to T x I,
A. IV. If the integral

S W a)p( 0 da

with respect to a distribution function p defined on T and the Wntegral
variable x has the mintmum value at 2 = », and , for a fized t, then x,
and w, are interchangeable with respect to W(=,a'), i.e., W(z, 2,) = W(=, x,)
for all x. .

On these assumptions the following lemmas and theorems are deduced
step by step as in S.D.F.

Lemma 1. For a fixed ¢ the integral f W(x, T) p(=,t) du with respect

to p and z is a continuous function of a varlable Z on each £, and has
the maximum and minimum values in each Q; (i = 1,2, ---, k).

A mapping z = @(¢) from R into Q is called & stathtlcal deculon
function or decision fuaction (s. d. f. or d. f.). By associating a point ¢
in R to a point Z which minimizes / W(x, Z) p(=,t) du, we have a d. f.

This d. f. depends of course on a distri‘i)ution w# and will be denoted by
2z = @,(1).
Lemma 2. Let {m,} be a sequence of distribution functions on Z,
which conwerges to a distribution function g, i.e., for any set E with
w(E — E*) = 0(®) it holds p,(E)—>u(E) (n— o). Then it holds for
any continuous function f(z) on @ and any set E in @ with u(E — E*) =0

3) E and EP represent the closure and the kernel of E respectively.
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S du Jradn o)

This is a “ Helly’s Theorem ” and is proved as follows.(*)

First, we notice that Q is metrizable, for Q is & (compact) regular
topological space satisfying the second axiom of countability. We denoteo
the distance of overy two points z, ' in Q concerning this metric by
|z — ' |. Now, for any arbitrary positive number @ and any point z,
in Q set

E, Z{m7”x—xo” < af.

Then, there are, in general, at most countably many positive numbers a
such that u(E, — E,) > 0. For, if F(a) == u(E,), F(a) is a monotone
non-decreasing function of a, therefore, F(a) has at most countably many
discontinuous points, that is, the number of the points such that Fla) <
Fla + 0), or Fa + 0) — F(a) = p(B) — p(E) = p(B, — BE)> 0 is at
most countably infinite. Hence, the totality = of the sets K, with
w(B, — E,) = 0 forms a basis of . '

Now, as f(x) is continuous, for any p051t1\e number € and any point
z there is a neighborhood of z, U, in 3 such that the oscillation of f(x)
in U is less than &, that is,

L 5up L f(a) = f(a")] <&.
Since ) is blcompact because of its compactness and satlsfactlon of the

second axiom of countability, we can make a finite covering of Q by such
nelghborhoods, Q c EV...VE,. Putting . «-

el = E ~E,
— (&),
33 = (e, + ),

...........................................

6q = Eq - (GJ, +e+ o+ cq—l):
o — & =0, " (i=1,q)

E=e+e+ - +e, 6‘/\61:0(7::#:‘7.)'
In each ¢, the oscillation of f(z) is, of course, less than €. Now, denoting
arbitrary points of e, e, -, ¢, by z,, %, -+, z, respectively, we have

we have

and

(%) Asto this proof the author owes much to O. Takenouéhi who debated the matter
with him.
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S e = Z ) we
=>

i=1

= 2 f | £(&) — f(2)] dps

< Eu(B) < ¢,

[ 1@y dn = g we

1

)
and similarly,

fEf () dpp = if (204 () l <€

i=1

Hence, 1t follows

fE f(f)«% - jE f(=) dﬂ!
gﬂm (ler) — 1 (e0))

< + 2¢

O3 mle) — wled | + 2,

i=1

where, C denotes an upper bound of | f(2)| in E. Since wm(e¢;) > u(e,)
(n — o) and weo can take € arbitrarily small, we have

J @ v [ dn (n o).

-From this lemma it follows

Lemma 3. let { f,,(m)} converge uniformly to f(x), where ecach f,(x)
is measurable with respect to ¥, and f(») is bounded and continuous on
cach ;. Furthermore, let {u,} be a convergent sequence of distribution
functions on T, whose limit distribution function i has the property
w(Q, — Q) =0, (i =1,2,-,k). Then it holds

fnfn(m) dppn — Lfn(m) dp— 0 (n — o).

Next we have
Lemma 4. lot {u,} be a convergent sequence of distribution functions

on T, whose limit distribution p has the property w(, — Q) =0 (i =
1,2,:-,k), and let {¢,} be a convergent sequence of points in R, whoso
limit point is ¢.  Then it holds '

IV(‘U; ‘pun(tn)) - W(x, ¢u~(t0)); (n — o),
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uniformly in z.
From this lemma we see at once that IV(:v, zp,(t)) is continuous on
Q, xR (¢ =1, -, k), thereforec measurable with respect to T x &.
Theorem I. The risk function

(@90 = | W(a2(0)) pla ) dm

with respect to a distribution x in Q is continuous on each Q; and its
induced function in £; has a continuous extention on {I,. Consequently,
r(z, @,) is, of course, measurable with respect to <.

The proof of this theorem follows from the

Lemma 5. For any positive € there exists a bicompact and closed
subset Rz in R such that

f oz, t)ydm =1 — &
Re

holds for all points » in Q.
Theorem II. For a distribution function g in © thore exists a d. N2

2 = @(t) which minimizes the value of the average risk, f r(z, @) dp. If

both d. f.s @*(t) and tp*"(t) minimize the average risk, thcn r (%, @*)=
r(z, **) identically in .
In the following wé denote by r.(x) the risk function genorated by a

d. f. @,.(t) and put r, = fr“(w)dp.

Theorem IIL. Tf p,— p(n— o) and (@ — 00 =0 (i = 1, -, k),
then r““(m)-» r.(%) (n — o0) uniformly in z.

This is an immediate consequence of Lemma 4.

We call a least favorable distribution, (I. f. d), a distribution function
A such that for any distribution g, r, = r, hold.

Theorem IV. .There exists a . f. d.

The proof of this theorem follows from the

Lemma 6. The set of all distributions on T is compact. This also
holds, if we impose upon the distributions the condition u(&; —Q.2) =0
(=1, k).

Proof. Let {m,} be a sequence of distributions, and let {e, ¢,---} be
a basis of Q (existing by a second axiom of countability). Now we add
to this set {e, e, ---} the whole set Q (iu the case when we consider the
condition (L, —Q°) =0, we add furthermore O, — Q0 (i =1, ---, L))
and we denote the so enlarged set by {4, 4, ---}. Then we select out of
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a sequence { ,u-,,(A,)} a convergent subsequence { [L,,(])(Al)}. This can be
done because {y.,,(A])} is bounded. Noxt, we select out of {;4,,(,,(44;)} a
cohvergent subsequenco { p,,(z)(Ag)}, and so on. Now, put g = fhym
Thon {m,} is obviously a subsequenco of {w,} and is convergent on any
4, (1 =1,2,---). So, lot u(4;)= l’inip,,,(Ai) (1=1,2,---). Let E be an
arbitrary subset of Q. We take ”ﬁ—;lit() or countable subset {e, ¢, -}, so
that Ec U ¢, and put
M E) = inf > p(e:)
i

where inf is taken with respect to all possible converings of E by {ed.
Defining a measure p in this way, we call & set B in  p-measurablo, if

for any set X it holds 7
WX) = WX B) + p(X-(2 — E)).
Then the class of w-measurable sets in Q makes a o-system IT*. Sinco 0
is metrizable, each ¢;, and consequently, each Borel set generated by e}
belongs to 2*. Hence T = T*. Of course, { belongs to T*, and u is a
distribution on ¥. In the case where we consider the additional condition,
p(Q — Q% =0 (i=1,--,k) holds. Now, let F be a closed set in Q.
Then F belongs to ¥, while it has always a finite covering l‘_lj Cagiyy ®(1),
i=1
q being the integers determined by F. Since
- q )
WE) = inf 3 p(ews),

=1

There exists for any &€ > 0, a finite covering ID eqrqy Of I such that
i=1

WE) + &> weas)-

i=1
On the other hand wo have
2 I"’n(ea’(l)) = /"n(-F) .

i=1

Hence
q’ [
W) + € > > wleawy) = ) '1'131 Mo (€arcir)
i=1 i=1 el
ql

= lim 2 B (€arcy) = im I"n’(F)‘
n’>eo

W i1

As & can be taken arbitrarily small, we have
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W(F) = Tim p,,.(F).
n'Seo
Next, let G be an open set in Q. Then Q — G is closed, therefore
w(Q — @) =Timp, (2 — G). Honce it follows at once
n’ oo
W) < Lim gy (G).

e

Now, let E be a set in T with w(E — E°) =0. Then
/"(E) = W E) = WEB"), I“n'(E) = plE) = e (B),

and wo see
-

W EB) = Tim p,, (B) = lim p,, (B°) = w(E").

Hence there exist lim w, (E) and lim g, (E°), and
n Seo n' o

lim p, (B) = lim p,, (E°) = w(E).
Therefore " e
lim g, (B) = w(E),
which proves the lemma. "
Theorem V. If A is a [. f. d., then we havo
r(z) < n
for all points 2 in Q. .
For any distribution x on Q, we denote by Q, tho set { % ; open
0w Dr—> /.dy,> O}.
Theorem VI. Tf % is a L. f- d., then we have
() =1,
for all x in Q, possibly except the boundary points of Q; (i =1, -, k).
Corollary. If Q, = Q, it is r,(z) =, for all z in Q.

Theorem VII. If both A and u are l. f. d., then n,(z)=r.(x) for all
2 in L. .

Theorem VIII. If Maxr,(z)=r, for a distribution A, then A is a
. f. d.

Remark : This is the inverse of Theorem VI. Therefore we have the
logical equivalence :

X = l.‘f. d. Z Tk(x) é "')‘.

Theorem IX. If a d.f. * = @(f) minimizes the average risk with
respect to a I. f. d. A, then @(f) minimizes also the maximum risk, i.e.,
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the maximum of the risk function.
Theorem X. There exists a d.f. which minimizes the maximum risk.
Theorem X1. If a d.f. @(¢f) minimizes the maximum risk, and if A
is a l.f.d., then @(f) minimizes the average risk with respect to A.
Remark : This is the inverse of Theorem XI. Therefore,

Min. Max r(z, 2) = r(z, 90) 2 [ r(z, o) dh =
14 e Q

Theorem XII. If both d. f. @*(¢) and @**(f) minimize the maximum
risk, then r(z, *) = r(z, @**) for all z in Q.

A d.f. @(t) is called admissible, when thore oxists no d.f. Y(t) such
that r(z, ¥) < r(z, @) for all  in Q and that »(z, ¥) < r(z, @) for at least
one point z, in Q. Further, a d.f. is called an optimum d.f., when it is
adimissible and minimizes the maximum risk. .

Theorem XIII. If a d.f. () minimizes the maximum risk, then
@(t) is admissible.

Corollary. There exists an optimum d.f.

Theorem XIV. If A is a l.f.d. and if a d.f. @(t) minimizes the
maximum risk, then r(z, ) takes a constant value », over , possibly
except at the boundary points of Q; (¢ =1,2,---,k). Moreover, if O, = Q,
then r(z, @) takes a constant value over (2.

Institute of Statistical ]PIdthematics,.Tolcyo.




