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Introduetion. - The object of this paper is to introduce an analy-
tical method and to show that a systematic study of the theory of
independent random variables is easily accessible. Such an attempt
is connected with P. Lévy’s maximal concentration function™:

Q. =§zg:)<“ {F(x+1+0)=~F(x—0)}.

which has a fundamental réle in his theory of the sums of independ-
ent random variables, where F(x) is a probability distribution. Re-
cently T. Kawata introduced a mean concentration function® .

cF(z)=2llS“ (Fx+1+0)— F(x—1—0))dx, 1>0,
By this substitution of “maximal” by “mean” an analytical treat-
ment of the probability theory has become easy. It is not difficult
to see, by M. Plancherel’s theorem and P. Lévy’s inversion formula,
that C,(J) can be also expressed by Féjer integral :

(=2{" (sini : S V)
CAh): WL( DI IAepa=2] (1~ X)aF () |
where if(t) is the characteristic function of F(x) and F(x)=(1—
F(—x))*F(x)®is the symmetrized distribution of F(x). Inthe present
note we propose to adopt the following two functions )

V(1) = zS eIt = e

e 12

dF(x) >0

and -

(). . This paper was read at the general meating of Math. Soc. Jap., }une4 1946.
> P, L’évy, L'addition des variables aleatoires, Paris, 1937,
- T, Kawata, The function of the mean concentration function of a chance varia-
ble, Duke Math. Journ., 9, 1941. :
. @ F(2)%G(x) denotes the convolution of two dlstrxbutlon functions F(®) and G(z).
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®,(1)= zS -0 f(z)dt:JLdF(x) >0
where Rft) denotea the real part of f(f). These two functlons
based on Poisson integral, will turn out to be useful tools in an
uniform treatment of our object. Hereafter in this paper, we shall
call these functions ¥,(/) and ®,(/) respectively the mean concent-
ration function® and the typical function of a probability dist-
ribution.

The contents of the present paper is divided into six chapters
Chapter I is devoted to show seven elementary 1nequaht1es connec-
ted with ¥,(J) and ®(/) which play fundamental roles in our note.
Chapter 11 contains two uniform diminution theorems concerning
V() and ®4/). A theorem of this kind was, in terms of @,(/), once
given by P. Léyy-W. Doeblin®. In our case of V,(/), the theorem
is a little more general than that of @.(/) and the proof is analy-
tical and so. perhaps more comprehensible. Regarding ®,(/), we
cannot give a similar theorem under the same assumption. This
fact may be attributed to the non-existence of the diminution
property by the convolution of distribution functions. But under
a stronger condition than the case of ¥:(/), we can show an
analogous theorem. - Chapter III is devoted to exhibit our method
in the .convergence problem of the series of independent random
variables. .In the treatment of such a problem, P. Léyy® gave the
method of the limit maximal concentration function, and A. Khintchine-
A. Kolmogoroff® used the method of “equivalent series »”, These
methods will be replaced by a useful one. In chapter IV we shall
consider some problems concerning the law of large numbers from
our viewpoint. Especially, the arguments of this law, which were
shown by W.. Feller ® and the others, will be much s:mpl;ﬁed by
our method. -

® Applying this function, the author has shown an outline of the proof of the
large numbers; cf. K. Kunisawo, Mean concentration function and the law of large
numbets, Proc, Imp. Acad. Tokyo, 20, pp. 627—630, 1944.

®> P. Lévy—W. Doeblin, Sur les sommes de variables aléatoires indépendentes a
dlsperseons bornées inferieurment, C. R. Paris, 202, pp. 2027—2029.

6 'P:Lévy, loc. cit. (1), or ‘“Sur les séries dont terms sont des vaflables eventuelles
mdependentes, St. Math:, 3, pp. 119155, 1931.
-~ A. Khintchine—A.  Kolmogoroff, Uber konvergenz von Reihen deren Gheder
durch den Zufall bestimmt werden, Rec. Math., 32, pp. 668—688, 1935.

. W, Feller, t)ber das Gesetz der grossen Zahlen, Acta, Szeget 8, pp. 191—201, 1937.
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In Chapter V, we shall deal with some problems connected with
an infinitely divisible law. The definition of this law is known
generally in the following two forms. The characteristic function
f(¢) of a probability distribution F(x) is called to depend on an in-
finitely divisible law, (1) if for any positive integer # there exists
a system of characteristic functions f,;, fie,--- , fan satisfying f(f)=
Fut®)f ne(£)-++++=fo(t) and the individual neghglbﬂlty, i e, fu®)—>1(n—>w)
uniformly for every finite interval and k(1<k<wn), or (2) if for any
A (I>a>0) fA(#) is also the characteristic function of a probability
distribution. In these definitions, the former clearly follows from
the latter, but the converse is not so evident. It was proved by A.
Khintchine®. We shall, in §1 of this chapter, give another proof
from our angle. Next we shall consider to deduce the canonical
form. Such a problem was discussed by A. Kolmogoroff<®, P,
Lévy®, K. It6"® and the others from the standpoint of stochastic
processes. While A. Khintchine™ directly gave an analytical
deduction from the second definition quoted above. However, it
seems that literatures have not contained a direct deduction from
the first. It is the object of §2 to show an answer to this problem.
Let X, Xppperoeer Xom, (B=1, 2,+4--- ) be an individually negligible system
of independent random variables. Then from §1 of this chapter it
is clear that the limit of the sums X, +X,p-e:e- + Xom, as n—>oo has
a distribution depending on an infinitely divisible law.. This fact
implies the following problem. What is the necessary and suffii-
cient condition that the distribution of the sum X,,+ X+ -+ + nmay
should, in Bernoulli’s sense, tend to that which depends on an
infinitely divisible law? Such a problem was discussed by W. Doe-
blin®®, J. Marcinkiwicz® and B. Gnedenko® from the respective

@ A. Khintchine, Zur Theorie der unbeschrﬁnkt texlbaren Vertellungsgesetze, Rec
Math., 2, pp. 79—117. 1937.

a0 A, Kolmogorof, Sulle forma generale di un processo stochastics omogenes,
Atti. d. r. Accad. d. Lincei, S. 6, 15, pp. 805—808, pp. 866—868, 1932.

un - P, Lévy, loc cit, (1), or Sur les intégrales dont les ‘element sont des variables
aléatoires indepandentes, Ann. d. r. Scuola Norm. d. Pisa; IIB pPp. 331—360, 1935, pp.
217218, 1935.

a»n K. Itds, On stochastic processes (1), Jap Journ. Math., 18, pp. 261——301, -1942,

(A, Khintchine, Deduction nouvelle d’une formula de M. Paul Lévy, Bull Umv
Etat. Moscou, Ser. Int., S. A. Math. et Mechan. 1, pp. 5—9, 1935.

a4 W. Doeblin, Sur les sommes d’une grand nombre de varxables aleato:res indé-
pendent, Bull. Sci. Math., 63, pp. 35— 64, 1939.
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viewpoints. But the same idea as §2 of this chapter can be
also carried out in this case and so the argument is almost analo-
gous to that of §2. Further, it seems to the author that the present
proof is considerably simpler than any previously given. It is the
object of §3 to show this fact. On the other hand, as an interesting
property of an infinitely divisible law, it is known by A. Khintchine
that it is representable as a partial limit law. However, A. Khint-
chine’s proof of this fact is executed by a somewhat coercive cal-
culation. We shall show another simple proof from our viewpoint.
In the last Chapter VI, we shall deal with some problems con-
nected with the estimation of the magnitude of the sums of indepen-
dent random variables. §1 of this chapter is devoted to discuss the
strong law of large numbers. Though the sufficient conditions for
the validity of this law are known by A. Kolmogoroff¢®, J. L. Doob"®,
T. Kawata®> and the others, these sufficient conditions are not the
necessary conditions for the validity of this law. We shall here
show that this problem can be answered if we deal with a sequence
of ihdependent random variables all having the same - distribution.
On the other hand, the following problem was touched upon by A.
Khintchine.- Let {X,} be a sequence of positive independent ran-
dom variables all having the same distribution F(x) such that

S"xdF(x)mo
0
then, what is the necessary and sufficient condition for the existence
of a sequence of positve numbers {A,|n=1, 2,..----} satisfying
‘ lim (X, 4 X4 oo+ X, An=1

> oo

5 J. Marcinkiewicz, Quelques theoresm de la theorie des probabilités, Bull. Semin.
Math. Univ. Wilno, 2, pp. 22—34, 1939,

<6) B. Gnedenko, Uber die Konvergence der Verteilungsgesetzen von- Summen von
einander unabhangiger Summanden, C. R. URSS, 18, pp. 4—7, 1938, 22, 2, 1939.

an A, Khintchine, loc. cit. (9).

8 A, Kolmogoroff, Grundbagrff der Wahrshem]xchkeltsrechnung, Ergeb. Math.,
II, 3 (1933), Springer.

a9 J. L. Doob, Probabxhty and Statxstlcs, Trans. Amer. Math. Soc. 36, pp. 759—
775, 1934.-

@2» 'T. Kawata, On the strong law of large numbers, Proc. Imp. Acad Tokyo,
16, pp. 109—112, 1940.

@b . A, Khintchine, Su une legge dei grandi numeri generalzzato, Giorn. Ist. Ita.
Attuari, 7,pp. 365—377, 1936.
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with probability 1? In §2, we shall show an answer to this problem.
In §2, we shall give an extension of P. Lévy—]J. Marcinkiewicz’s
theorem. In other words, let {X,|n=1, 2,.----:} be a sequence of
independent random variables satisfying

P, {|X,|>Z}<CZ~, P, {|X,| >Z}=cZ~
(Z=2,>0% 0<a<2; n=1, 2,.-----),

where C and c are constants independent of n. P, Lévy for 0<a<1®®
and J. Marcinkiewicz for 1<a<2® showed the existence of a
sequence {A,} such that with probability 1 | X;+X,+.-----4+ X, | >A.
for infinitely many n’s, or for at most finitely many n’s. This
theorem can be extended to more general case:

.Z_S deF,,,(x)SAS dF,(x) n=1, 2,-+eeee

2
Z lo|=z jz{>z

(Z>2,>0),

where A is a constant and F,(«) is the distribution function of X,
(n=1, 2......).

The author here expresses his hearty thanks Prof. T. Kawata
and Prof. S. Kakutani for their kind encouragement and valuable
remarks given to him throughout the present works.
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(22) P. Lévy, loc. cit. (6).
(#3) J. Marcinkiewicz, loc. cit. (14).
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Chapter I. The fundamental irequalities.

§1. 1. The' generalized' mean concentration function. Given a

function m(x) defined on (—, o), which is even, non-negative,
integrable and non-increasing (over (0, o)), furthermore satisfying

the following conditions

(1L11) m(0)=1
and
(11.2) m(x)=7%?8jueit”p(t)dt, ((1)=0)

Let f(f) be the characteristic function of a probability dis-
tribution F(x) i. e.,
| f(t):S” ¢ dF (%),

Then we define a function gp(h)(h'>0):
9:(h)= 1/-2_5 u(ht) | £(8) | “dt.

This function gx(%) is caIled a generalzzed mean concentratton functzon.

g+(h) has the following elementary properties.
1.° g:(#)=>0 and

g,.(h)=Sf m(x/h)dF (),

where F(x) denotes the symmetrized distribution of F(x), i. e.,
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F@=" Fle=5)(1—F(~y)=F(x)*(1~F(~2)

—cc

For,

=:h

g:)=Jo (" unt) |0 = S wan ([ {7 e vap oaro))a
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:Hl

@-7)

g” S dF(x)dF(y)S ot 2 (At
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AR
lim g.(k)=1.
hres

For,

. e B ’
lim y.p(h)—}ggﬁ;gwu(ht)lf(t)l.dt »

ha>oo) _ o

EEREIN 0 X\ JT =\ . 5l < _
_th gn(z)dF(x) S mOE () S_mdF(x) 1.
3°. Under certain conditions on u(f)*®
lim 9:(h)= tim -} S FOrde.

This fact follows from N. Wiener’s. form'ul:’a

4>, gy (h) is a non- -decreasing function of k(>0) i e, zf h>h’>0
.we shave. gf(h)>g,~(h') .

In fact

gb,(h)-_g,(m:S” {M(ﬁ>—m<%)}dﬁ(é). "

() S Boch.ner, Vorlesungen iiber Fouriersche Integrale, Le1pzxg, p. 30, 1923.
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As m(x) is non-increasing, we have g.(h)=g.(%').
5°. g.(h) diminishes by the convolution of distribution functions.
Let f(#), f.(#) be respectively, the characteristic functions of
F\(x), Fyx), then the product f(f)f.(¢) is that of F,=F, Hence

gueniB)= " cnnirioscorar

—o0

h = 2
<2\ wnisiora

=g, (=12

Dénote by Q%) the maximal concentration function of a dist-
ribution function F,(x) due to P. Lévy, i. e.,

Q.(h)= §g£ ..,{F (x+7+0)—~F(x—0)}.

Then we have the following relation.
6°. There exists a positive constant a satisfying m(a)>0 snch that

21+ S:m(x)dx} Q. (h)=g:(h)=m(a)Qx(ah)
In fact,
o= prr-2 (Yt
R— m(k){ﬁ((k+ 15&)—F(kh)}
<25%.. n;if;m;(é)éé{z%(O)f S:m(x)dx} Q;(é)

s2_{1+‘S:m(x)dx}Ql(h),

where the inequality Q#(%)<Q.(k) follows from the diminution of the
maximal concentration function by the convolution of distribution
functions. While, as m(0)=1, we can select a such that m(a)>0.-
Now, let T ' S »

QI‘(dk)‘=_St<1wp Q{F (x+ah+0)—F(x— O)}
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=F(E+ah/2+0)— F(£ —ah/2-0). _
For £ —ah/2=<x<E+ah/2 we have F(x+ah)—F(x—ah)>Q (ah). Hence

N L R g St

_>_S_ d(1—F(— x))g m“y)dF(x)

_m(a)S_ (F(x+ah) ~F(x—am)aF

Zm(‘a)s {F(x+ah) F(x—ah)}dF(x)

E-an/2
=m(a)Q(ak).

Thus, we obtaln 9:(h)=m(a)Q}(ah). o
As examples of the generalized mean concentratlon functwn, We
can enumerate as follows.

1°. Put m(x)=(1+4%", then M(t)='VW exp(—|t]).
Hence = o

V()= S_,\/—*e | (6)] e

©(L15) - S M| f ()t = S_j_fgdﬁ(x)‘.

2°. Put m(x)=1—|x/2| for |[x] sz;_ m(x)=0 for [x]|>2, then
_ /2(sinty
# (t)_~/ ?( t ) '

\

can= = S“N/%(S‘“"’ \f0)1°at

Hence

=’% S"’ ‘Sm B\ £ (6t = Zy(l——)dF(x)

ThlS CF(h) is the funct1on 1ntroduced by T. Kawata.® »

@» T. Kawata, loc. cit. (2)."
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3°. Let m(x)=exp(—2%2), then u(f)=exp(—t¥2).
Hence

n,.(h)—f,]_/’;; S” e f(edt.

= S‘” R/ 0))

In the following lines we shall mean by ¥, the mean concentration
Sunction of F(x).

§1. 2. The fundamental inequalities. If we replace |f(f)I* in
(1.1.5) by the real part of f({), we obtain the typical Sfunction of F(x):

@, (k) :_:th eMRf()dt= S hzh dF (x).

This ®,(k) is clearly non-negative, non-decreasing and contmuous
function of 4(%2>0), and evidently

lim @, (h)=1,

Between ®,(4) and ¥ (h) the following 1nequaht1es eXISts
1°. For any h>0

(F. L. 1) 2(1—@(h)=1 =Y, (h).
For, as we see
1-lfOf=1-(RFE)-Rf D) .

=2(1--Rf()),
we easily have (F. L 1),

20, If
(1.2.1) 1—F(h/96)+ F(—h/96)<1/32,
we have ' .
(F. 1. 2) 1-%,(A)>101 -, o)

where (h) is the typical function of F’(x) =F (x+ha) and a= S xdF(hx).
-1: AR

(*) (F. L. 1) is the abbrebiation of ¢ Fundamental Inequality 1.
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Proof. In the first place we make a remark

la|< Sl |x|dF (hx)< S |x|dF (hx)+ S |2|dF (hx)

> |w]>1/% 1% 151/%
>1/32+1/96=1/24,
and for the median M of F(x)
(1.2.2) |M|<h/96.

Put

Fh)=f (t/h)e~-w.—_-5°° ¢dF (hx + ha),

—co

then for 0<|t|<2

(] smsarono)|
< l’ 2 S sin ¢z dF (hx+ha).

lz+a | <1/48 1

s4?S xdF (hx+ ha) +§S \%['dF (hx+ ha)
‘ {wta| <1/48 3 Jz+al <1/48

1 1 2 oo xg
<tjgll aFx)+4\ aFgx+ L(1+(L S X ARt h
lal‘glzl>l/4§ A lzt>1/4(s x) 6< <16)) o 14 (hx+ a)

<25(1—=F (h/48)) + F(—h/48)/6+ (14 (16) 26 (1 —Ds.(h)).
As we see easily, recalling (1.2.2),
S dF (hx)<2 S dF (hxy™,
|z |>1/48 | @] >1/96

we have

@D In fact,
Pr{|X—M —(X—M)|>1/96}=Pr{X—M—(X—-M)>1/96 ~(X — M)<0}
+ P {|X—M—(X—-M)<—1/96 ~(X—M)=0}
=%Pr(1X—-M|>1/96}Z;¥_%P,,{{X (>1/48},

where X and X are independent random variables both having the distribution F ().
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(f ’(t/h))’ﬁz% S AF (hx)+ (1/5)(L— s (B)) + (ﬂ sin tx dF (hx+ ha))2

1% ]>1/96 e |z4a|>1/48

25 > 2 E 11 @
s_§(1+(96))5 A+ 50 qil(é))

+2S dF (hx+ ha) S“ (1—cos t2)dF (hx+ ha)

lz+a|>1:8 ~o
<76800(1—¥,(K))+ %(1 — D, () + 1%(1 —RFH ).
On the other hand, for 0<|t|<2

1—Rf(/H)= S“ (1—cos tx)dF (hx+ ha)

|z+a] =106 |x+al>1/%

szS XdF(hx+ ha)+ZS AF (hx+ ha)

|a+a] <% (2~a]>1/%
=2(1/96 + 1/24)’ +1/16< 1./1'5.» ,
Hence '
A 14/15 <R f'(E/R).
Consequen'tl‘y ’: . -
LB R~ (i‘ff’(t/h))’
(1.2.3) =>(1-Rf' (t/h))(1+14/15) 76800(1 ‘I' (h))
(/51 =0 () ~(L/1E XL ~R £ (E/))
>(9/5)(1 —~Rf'(#/4)) —~T6800(1 —¥x(h)) —(1/5) 1 = Prh).
As the inequality o
. - 1I=RAEH=SEA-RSE)
follows from the elementary inequality 1—cos(2x)<4(1-cos x), we see

1=, - So eia-n Fi )t = So+ e S,,

+1
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- S'e-'(1 R R+ D2 Sie—ﬁ'(l R/t
. .
124 ={a-nremasezes (a-vrom
<1 2V 82(1 —RfI/h))dt
.

<3 S"’(l —f (Rt

0

Hence, by (1.2.3)
.S"u —If @)= % Sz(l~$)} F(4/R))dt —153600(1 — ¥, (h)) — 35(1 — @, ().
Consequently, applying (1.2.4),

e S “ei(1—| f(t/h)l“‘)dtzl%(l — D, (h)) +153600(1 =¥, (k) - %(1 —®,.(h)),

0

from which we obtain

(153600 + ¢?)(1— \I'F(h))Z%(l @ ().

Hence we can conclude (F. L. 2)
Next we can give the following inequality.

3°. Let a be a positive number (0<a< %) and let F(x) be a distribu-

tion function satisfying

(1.2.5) F(+0)=2>0, F(—0)<1-x, (0_<x< 1)
and ‘
(1.2.6) 1—F(h)+F(~h)<a,

then we have . ;
(F. L 3) 1=V, (A)=K(a, \)(1 = P(h)),

where K(a, \) is a positive constant depening on a and .
Proof. Denote by I' and 1", respectively, the following sets: ' -
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E{O<t<2 sin % - >0} and E{O<t<2 sin =~ 7 <0}

z

then we see that I’ contains the interval (0, %) and I” the interval
(—%, 0). Hence, recalling (1.2.5) and (1.2.6), for 0<¢=2

RfEmy= (Saa msm i) 3 (x)) (S sin _dF (x))

sS dF (%) S” sinZ’il’Zde(x)§2(1—x+a)(1—mf(t/h)),
where I is I’ or I”. On the other hand, by (1.2.6)

1—Rf(t/h)= g (1 —cos'® )dF(x)

[z |<h lz|>h 2

from which we get 1—¢¥2—-2a<Rf(¢/h). Hence for 0<t=T (2rx—4a>
T/2)

1= f@m=1~(Rf WY —(IF(t/R))
=(1-Rf (/AL +RF (1)) ~(2+2a ~2AN1—RF (1))

_>_(2x —_gf —4a)(1 —~Rf(t/B)).

Hence we see. v v _

T R T? T

S -1 femae=(2n— " —-4a>s (1 —~RF(¢/R))dt.

0 2 0 .

In the same manner as (1.2.4) we get
1—®,(h)<R(T) S’(vl _RF(/R))dt,
' 0
where R(T) is a positive constant depending only on 7, thus we have
e (eI emmae=((2r- ] e RD)A 2,0
0 _ 2

which shows
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1-v, (h)“'fR“l"(TS(Z“ T22»—-4a (1—D,(h)).

Since T is a constant depending only on « and A, putting

1 T
K(a, \)= IR(T)<27\—- 2~~4a>,
we have (F. L. 3).

Now we shall consider the relations of ¥, and ®, to the con-
volution of distribution functions. Let F,(x) (k=1,2,-----+ ,#n) be an
arbitrary system of distribution functions and f.(¢) (k=1,2,----.- , #)
" be the characteristic function of Fy(x) (k=1,2,----+ , 7). Further denote.

by F % F,%..... # FF, the convolution of F(x),----- , Fu(x). Then,
4°. For any h>0
(F. L 4 1= pesr, (B) < Tps(1 =T ().

For, this easily follows from the next ine'quality

I-IL2 | AOIP=252(1 = /(O
5°. If there exist $>0, T>0 and h>0 such that for 0<t<T
(1.2.7) 1L, | £/ F=8,
then we have | | | |

(F. 1..5) S~V ()KL ~Ypyseosr (1)),

where K is a constant dependi;ig only on T and 8.
Proof. From (1.2.4) we have, by an elementary calculation,

128 ZAA-AGRNE LT AR

for 0<¢<7T. And as the 1nequahty 1-cos (2 x)<4 (1—cos x) clearly
implies

—lf (2 t/h)l"<4 a-1f (t/'h)l ),
we get in the same manner as (1.2.4)

1=, =M [ L=,

where
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M=Max{1, 3;z2%exp(—2%>T)}.
Hence from (1.2.8)

Se(1-, (h)><M>:;=1§(1—1fl(t/h>mdt

MeS o (L—TL, | Fu(t/R))dt

< M et (1T, LA W= K (L~ p.c.cr ().

0

where K=M ¢e"/6 is a constant depending only on T and s.
6°. We have

(F. 1. 6) x4 fltih)exp(—~iad) — 1| <(£+ 2| + )X 2(1 = P (h))
for every t and h>0, where
S 2dF(hx) (k=1,2,0,m),
Proof. We have : |

| fult/)exp( —iaf)—1]| = IS“ exp{it(_x_ -—a,c)} dFk(x)’

sES [exp{it(x—ha)/h} — I]dF,c(x) +2f ar)

| |z |=n lol>n

l/\

H eentmpn _ Wz —ha) l)dF,(x)j»

[z|<h

lt_l
*2

(x-—hak)dFk(x) +2S aF)

[ERR= |z|>h )

< (x—hay dFk(x)+la,l]t]S dFk(x)+2 dF,(x)

2]12 |z | <h [mi>a . |z |>h

) Y

<(e-+21] +4)S- s

Hence

2 fut/ B)exp( —iat) =1|=(@ + 2+ ) (1-P £, (7).
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7°. Let X, X,pee---- , Xn be any system of random variabes such that
the expectation E(X,) of X, is zero when it exists and deﬁne a(k=1,2,
------ , 1) as follows:

- 4,=0 if E(X.) exists,

ak=§ xdFk(x)_ otherwise.

Jizist
Then we have for every t o
F. L7 Z&lfult/h)exp(— iakf) =1 =@E+2+ )1 - ‘I)sk(/‘i)t){
Proof. 1t is sufficient to show that if E(X,) exists, we have .
| fu(t/7) ~1({ =@+ 4)1 — D ().
In fact, -

Ifk(t/h) 1I—,S (e"’"‘—l)dFu(x)’
o ot

< _xedFk(x)+2S dF(£)=<(+ A1~y (B)).

2h lz]<h lml>n
We shall find that the above stated mequahtles Wlll have fumdamental
roles in the présent ‘paper. EEPER :
Chapter II. The uniform diminution theorems concerning., ;.
a mean concentration functmn and. a typlcal function,

§ 2. 1. The umform diminution theorm concernmg a mean con-
centratlon functlon leen a system of random varzables

1 P
(SR i i FER P S S T I I

(2.1.1)

........................
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which will be denoted by denoted by || X,.ll. And let F,.(x) be the
distribution function of X,.. Hereafter we shall suppose the inde-
pendency of the random variables in a same row but do not neces-
sarily admit it in different rows. Then we have

- Theorem 2. 1. 1. Given two real numbers a and 3 (0<a<1,0<B=I),
we can determine two positive numbers K and N—both depending only on
a and B—having the following properties: if m, =N and if F,,(x)(m=
1, 200000 , m,) is a system of distribution functions satisfying

(2.1.2) . -’—;l; 2::1 Yenn(lo)<a,

wheye 1, is an arbitrary but fixed positive number, then

2.1.3) S R OV ¢/ =)

Let f.a(f) be the characteristic function of F,,(¥) and let F..(x)
be the symmetrized distribution of F.(x). Then

s, fnm(t)l'<(— S lfnn(t)P) ”—{Sle’” (o

nm

and consequently

| «pf;,;;.....*gnm,;(l):z“S*e-nrn,"‘,.:,f,,.;.(t)vdt |
) 0

= e gutya=\"ea.inymt=p D,
[} 0 ‘
where

K "(‘)‘S ed(. Zm-lF,.mw) = u%dé;i;)

is the characterlstlc functlon of symmetrlc dlstrlbutlon G (x) This
fact implies that in order to prove (2] 3) it is suﬁ'ucelnt to show
e(V'm, m,.Klo)<B, m, >N
Lemma 2.1. 1. Let mbea _gwen posztzpe integer and put sucéessively

(2.1.6) 0<s=((1—a)8
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(2.1.7) e==853/21/2n(log 3—log B)  (<1)
and
(2.1.8) h=@3/e: (D

If there exist an integer n satisfying m,>mh and a real number a
(=v'm,e€) such that

(2.1.9) 5<G*(3al)—Gr(aly),
then we hvve
p(V'm,7 1)< B, my=mbh,
whevre
(2.1.10) . 2=88/21/3m=(log 3—~log B)e

is a constant depending only on a and S.
Proof. From (2:1.5) we have

ey ={"

—co

e"dGr(x)

=1+S ’(e"?—l)dcz'*(x)ﬁ“s (¢~ 1)G3(2),

2| <Vrado |z >/n‘ aclo

since G™* is symmetric, the last term is <0, and we see

(9.1 £ S“" BACI(2) + —? S“" FAGm ().
0 [i] ’
Letusp'ut. , ' A
(2.1.11) | T=log 3—log B=7/e.

Then for evérfr t (0<t< T)
@112) (o hatyr<i- L (" Face e

h aiTglg “Jo

B S‘/h—m!*:iG *( 5
ST ICET XdGr*(x)
3naA L ), R

‘8 G"*(x) denotes the convolution G*G**G of m equal qompoﬂeﬁié' G
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2¢® SV an €lo
Sl_ 2d an
ShaTE ), “AOH ()

Since (2.1.9) and (2.1.8) imply

<G (3aly) — GrH(al) < S "dG¥(%)

21(2) alo

sis PG (x),
aly o

so we see from (2.1.12)

= 218 2%8
- < , S S R
9.dt/V hatl))'<1— S € p( 3 ht_) 0=<t=T

If we now use the fact m,=>mh then

(9t T @)y =(9.(t] T arky™< exp( —_Zéf ) , 0<t<T.
and consequently

oy e S e~t(g,,(t/1/‘zzmlo))'"~dt

0

<§ e (0.t]y el ndt+S edt

| sgre*‘-’ﬁ“dtﬂreﬂss LidtseT

0o .. 0

<1 _S%Hexp{logs log 3}.

2
Thus the definition of & and 7 of (2.1.6) and (21 10) 1mply
o/ Tarl )<y 814 2 +8/3< ‘

As v m,<3/me<y/Ta we finally see
- finally

ouly/ TA)ZRY T4/ T +BI3< B, m=mh.

This gompletes the proof of the lemma.
Proof of Theorem 2.1.1. In the following lines we assume that
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n is an afbitrary but fixed integer such that.
> N=N(a, £ =h 1og [1~ (2~ )1 ~a 25201 ~a—43)} Vlog(a+29)

and 8, ¢, v and T are the same constant defined above
The following two cases are possible:

(2.1.14) <(1-a—8)2,
(2.1.15) >(1—a—8)/2.

1°. Assume (2114). The from (2.12)

_a<25 13+ . ( 1 E»-'-'1an(-"))

G/ el =1~ G/ el

<2 S' g A0 % [ G, 426,/ mch
0 N

<2 S PG (%) +1—a—3.
lo [} )

Hence

7z

(=1}

<2 S "WSdG (x)
Put ‘

9ut)= S‘” eft«idcn(x);n S (€ =1)dG (%) + S (€ —~1)dG,(#),

e lajSympeto . . || <y/Mnelo

then, by the same argument as in the proof of Lemma 2.1.1, we see

atl vty =1-epsmet) | "RdG(x)

coA

m,a* 3m,r

<1 3t28 < exp { £°8 }, 0=<t=T,
therefore

?’n( 1/ m,,'rlo)— S -t(gn 1/ m,,'rl?>)

S e (9.1 m,.Tzo))mﬂdHS etdt
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0

< STe~t-§—3dt+é-f‘s2!,§E; o i< 3,75 4+ BI3< .
. . v - _

© 2°, Let us suppose (2.1.15), It is sufficient to consider only the
case which is _ . , ‘_

(2.1.16) Gm*(3al)— Gi*(al))< 8, m=1,2,+--- , [N/},

for any a>/m,e, where [N/A] denotes the integral part of N/A. For,
if there exist an a(=v'm,e) and an m (1=m<[N/k]) such that (2.1.9)
is true, by Lemma 2.1.1 m,>N=>mh implies ¢, (v ml)<B. We shall
by induction prove the following inequality

(2.1.17) %-(1 — a5 )t < GiH(y/mel,)

m=1, 2, , [N/h], (n=a+2 §<1).
when m=1, we see from (2.1.15)
n(l—a—4 8)/2<(1—a—8)/2< G,(y/ Mmeh).

Now assume (2.1.17) for a fixed m (|N/k]>m>1), then by (2.1.16) we
see that for an arbitrary number @ satisfying y=2al,>al;=>v'm,el,

=Gy +y/muel)— Gy —v/myel.)
< Gp*(3al,)—Gp*(al,) <8,
m=1,2,.-..., [N/R].
Hence

G P4 (/M el ) =1~ G, (/L)

_ S“‘ Gy Tnely—)dG.()

= Smé,":*(l%ezo—y)dcn(y)+ ng‘:¢*‘<1/%610+y>dG~(y>

=7 G mt 6,00+ |G/ el =3)G,)

%/ mpelo
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+ S%n%@.ﬁ‘*(l/'th}.elo+y)dG,.(J’)+ S (G — v/ mucl)— 8)AG.(Y).
[}

2/ hipelo

Whence, applying
G (y/ Mnely—9) + Gy — v/ Myel) = Gy — / m.el) + G"“(y 1/m ely)= 1

which follows easily from the symmetry of Gp*(x),

. éilcgz+1)*(vfm:elb)2 @;*(1/;;,;610){6,‘(2 Vv el —--;—}
+G(3 Vn?;ezo){cn(z fnT,,ezo)— l} +(1=8)Ga(2y mely)

(Got(y/ Ml + G (3y/ mel )} {G,.<2/m"ez(,)-' J+a- 8)G.2y k)

Putting a=y/m,e in (2.1.16), we have
G (v/Muely) =8 < G (3y/Mucly) < Gi*(2y/ Mel)
-m= 1: 2:' RS [N/h]-

Thus, by the assﬁmption of induction, | | ‘
G4yl (1 a— 40) Simr) =8} { G2y macl)—
+(1=8)G(2y/ el |
= {(1—a—18)Z 20— 8} { G2y el + G2y el = |
+ {1=(1—a— 48587} G2/ myeh)
21:"‘{—4@2,21»7‘- §8+ (L= + (et 48 S0’} a- —a2—35)

=1—a_4821 ’7"*‘ {7]"”1-—7]+282m i}(l—; 38)+1+a2 43

1 az 482-m+{1+n’“‘ 74283 ’7}(“1—"“2—-48)

>l-a l—a— 482m+1 ‘+‘+{1—77+2325':177;}('1;a2:"_4“3)
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>(1"a 48) m1 £+l
o

which shows the required inequality. Accordingly, putting m=[N/'h]
in (2.1.17), we obtain

[N/n]*(.l/;ﬁ el )>(L£7‘}§)2Hr§n3nc
2 |

= (1—a—43) (1- n([N/n]n))/(]_ —n)= (1-a T‘i_al:jlzm
2 - 2 1—9

By (2.1.13), we easily see

(2.1.18) Gr(y/ el (1= =40 Sy 2= ),
Put
(2.1.19) r=v&8/2(1= 7).

By (2.1.18) and the diminution of the mean concentration functions
by the convolution of distribution functions

g (y/mal)= zs s dGE ()

xlo) +x

(" V() =2 3 dGLYm
So O L WAVl
2¢* : > €(2—8)

~__“¢ [N/ll* I\

= o G e 10)"2( pa)

By (2.1.19)
@=p) _  (2=R)

240 e +e2B/2(1— B))_lﬂ’g'

Whence we -have
p.(vVmAl)=>B, n>N.

From the definition of A it follows that A is a constant depending
only on « and 8. Thus putting K=Min(r, 7), we can conclude

g)‘-m*'---n*ﬁ'nm"( 'l/mnKlu)Slg
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for »n satisfying (2.1.4).

Corollary 3. 1. 1. Given a sequence of mutually mdependent random
variables {X.\k=1,2,.---.- } and given two positive numbers a and B,
(0O<a<1, 0<B<l), then there exist two positive numbers K and N—both
depending only on « and B—having the following properties if n>=N and

if {F\(x), F(x),-+* , F(x)} is a system of the distribution functzon of
Xy Xppeoeere » X, satzsfymg
Y, (l)<a, (m=1,2,0m )

where 1, is an arbitrary but fixed positive number, then

\Prl*u-m*t‘n( \/n—KIO)SB' .

If we replace ¥, in this corollary by @, we have P. Lévy—W.
Doeblin’s theorem®®. However, in our case, we could decide the
values of the constants N and K which have not been concretely
given by them.

§2. 2. The uniform diminution theorem concerning a typlcal
funection. A typical function ®,(k) does not necessarily diminish by
the convolution of distribution functions. For example, put F(x)=0
for x<—1, =1/2 for —l<x<1 and =1 for 1<x. Then the charac.
teristic function f(¢) is cos#, Hence Rf(#)=cost¢. Consequently

‘M(h):lzs e Rf (Dt =h S -m¢ostdt—hL+’1

and

rer(W)=h | e

0

MR f ()t = hS eMcostdt -

_,,S .M(cos(zzt)+1>d,32(h?+4 +1).

1

Therefore we have for k</7

h? 1( n
D h
HP= i1 <7 Tryd) O
However, we can show an analogous theorem to the previous section.

Given a system. of random variables ||X,,|| defined by (2.1.1) and
let F,.(x) be the distribution of X,." And furthermore, applying

@ P, Lévy—W, Doeblin, loc. cit. 5).
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the continuity and the monotone of ®,(k), define the followmg
function D,(«):

(2.2.1) a=pyiesran, (Di(@)), (1>a>0).

-

Then we have

Theorem 2. 2. 1. Given two real numbers a and 3 (3/4<a<1, 7/8
<B=1), we can determine two positive numbers K and N— both depending
only on a and B—having the following properties: - if m,>N, D, (B8)=l,

and if F,(x) (m=1,2,...... , m,) is a set of distribution function each
median of which is zevo, and satisfy
- (2.2.2.) Dp(l)=a, m=1,2,...... , My,

where 1, is an arbitra)'y but fixed positive. number, then we have
(2.2.3) D(3)=vmlK m, >N
and cbnsequently

(2'2'4) q,l"m:l s KER ('l/mnl K)<6

mn’

Proof. From (F. 1. 1),

1-B=1= Py s (D,‘(e)>>—<1 LI X )
(2.2.5) |

@] =DneBd | % | >Dnr¢B)

R

=2{\ wiDugaf,x Bt a3 ().

While

- S( C‘fs*j"j)"F w77 Fom,

~

< B gp +zg AR,
121 =Du 2Dn(,3) 1212008

11, |[f(

o)

Hence ‘we have for O<t<2 applylng 1>/8>7/8 and (225)

f( 5 (ﬂ))

r2

1 -1y,
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SZ{S x2/sz(B)d f)ll*......*fnnln(x) + S d“‘m**ﬁ‘?;wn(x)}SS(l —,8)< 1

|z ) =Dn(B) |z | >Dn(B)
Whence we obtain for' 0=t=2
0<8=1—8(1=8)<Ilin | frou(#/ D))
By appealing to (F. I. 5) and (2.2.5) we see
(2.2.6) (11— W},,,,,(D,z(b’)))<K(1 Vs wicrmn(Di(B)))
<21-8)C

where C is a constant. On the other hand, from the assumption
(2.2.2) and D(B)=1, '

1 —a= 1 - ‘I)Fum(,lﬂ)zl - q)qu(Di.(b‘))

zS dF (%).

1% | >YDn(B) 1 'Y
where fy satisfies 1/4>(1++*)(1+a)/y’(=E). Hence By (F. L. 3), we see
1-Tru(yD.(BN=K(E)1— PruulyDu(5)))

=K(E)/(v*+ 1){S 2% DY(B)AF () + S dF, '""(x)} L

EJES MG 12 >Dp(B)

=K@/ + || #/(DY8)+ #)F )+ Sx2/<Dz(m+x2>dF.,m(x>

| 2 | =Dn(B) | =] >Dn(B)
. 2K(£)/(72+ 1) {1 —'(I)an(Dn(ﬂ))}: 72—": l, 2' """ ;s m= 1 2 """ mn- -
While | |
1= (DAL DN F )+ § . dFun

(B N | | >Dn(8)

=2 2{ o (a)+x*)dF..m(x)+ZS x/(Dﬁ(ﬂ)+x2)anm(x)

A=) <Dn(.3) ’ Iz >Dn(B) -

S QDI L= Pr (DN, 1=, 2y, m= 1,5 m,

Since £ and v depend only on a, we may put K(©&)y2(y' +1)=K'(a).
Thus we have '
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1 ""\I,an(Dn(ﬁ))z K’(a) {1 - (I)an(Dn(B))}

Hence by (2.2.6) and (2.2.2) we obtain

201=B)C Smn (1 —or (T
K/( ) "'v=l{1 D ;n1x(D1z(/3))}
0 14 i d 1:m
2"1 IDIA(G) '{"lZ {SI ] IxS{)lban" (x)+ S ET >Fz; (x)}
12

= . (1= by (W} Z—b_(1_g

Dig)+ 1 2 Pl =g g =)
Hence
. D(B)> ‘m, 1/ (“2"(“2%)(5) L

Thus if m,>N(a, B) 41— B)C/(l -a)K', we have D(B)>1/m,.loK
where

(A-a)K'(a)
4(1 B)C

Consequently we have

Dy ('I/le) B’ .

Ny Keerenesk nm

where K is a constant depending only on « and 3 ThlS completes
the proof of this theorem.

Poyee
MR )

Chapter III. The convergence problems concerning the

‘series of independent random variables

§ 3. 1. Convergence criteria of the series of independent random
variables. Let {X]k=1,2,..... } be a sequence of 1ndependent random
varlables and let Fk(x) be the dlstnbutlon of X, (k 1,2,-ee00 ) Put

‘I’,,N(h) Ek-ml(l ""I”' (h))

As ¥ N(h) increases with N and decreases when n 1ncreases, the
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equations

\I/n = Hm \I,nN(h):

N->eo

V=lim ¥, (h)

define a limit function ¥(%).

- Theorem 3. 1. 1. The function V(h) is independent of h, namely

identically zero or infinite. -
Proof. The series with positive terms such as

; ((8.1.1) o St {1—Yr(h)}

is convergent or divergent. If (3.L1) is convergent for'a fixed num-
ber %2>0, then (3.1.1) is also convergent for k' (h'*ch, o >h'>0). In
fact, if A'=h, it is evident. Hence it is sufficient to consider the
case h'<h, ‘

,,

‘_ '°‘,’>2’“:‘{1“\I’F"(k)}=(%>22“]S:(h Y (B afh): dF(x)

( )EL 1S_m(h$ e dF (%)= ( ,>22k:1{1 _'\_I,Fk(_h’,)f

Consequently if (3.1.1) is convergent for some %~>0, then holds
identically. In the same way, we can show that if (3. 1 1) is divergent
for a number %, then (3.1.1) is also divergent for #' (h:h', oo >h'>0)
and Y(4)=o for every A£>0.

Theorem 3. 1. 2. If ¥(%)=0, there exists a sequence {a|k=1, 2,--+---}
so that: Y (X;—ay) converges in prebability, and if Y(h)=c, tken tkere
exists no sequnce having the above property.

- Proof.  First suppose ¥(4)=0, then we have for any e>0 Z(l-—~

‘I’Fk(e_))’<°°’. Now let X, X, X, Xpeerer be ‘mutually independent
random variables, X, and X, having the same distribution function
Fy#) (k=1,2,----), and put X,=X, ~.X, S;y=X,,;+ -+ Xy. Thenby

(F.L 5)
((312) . S {l— Ve ()= {1 Ve *Fﬂ(g)}z_;_ SNESN

Whence, denoting by M,, the median of S,y=X,, 4 + X,
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PS>} =P{Sn>e} + P, {Siy< —e}
=P {|Suwv—M,y— Sy~ Myy) < — e} ~(Soy— M,y=0)}
+ PY{(SIIN—MYLV-_‘ (S—MN—MMV)< —G)f\(‘siw_'MnNZO)}

z% P,{|Sux— M| >e}. .

By (3.1.2) and the convergence of X(1—V¥r,(e)), we have for any >0
(3.1.3) m P,{[Suy—My|Ze) =0,
7, N>c0

from which we can show the existence of a sequence |a,| k=1, 2,...... }
so that >(X,—a,) converges in probability. In fact, select two
sequences {e.>0]k=1,2,...-. Zek<00} and 0=N,< N, < N,< ++eeee <N, <
Ny <onenne such that for #, N>N ,

v{ ISnN - nNI ka} =e.

Now define a sequence {@,|k=1,2,-----+ } successively so that the medians
of SV*(X,—a) are zero (n=N,_,+1, N, ;4+2,c..., N; k= 1, 2,.e00e ),60
Then we have for N<n<N,,+1 and N,<N<N_,, (n<N =9

P{|X 1(X —a)- Se(X—a)| > St}

R IR SRS ST SIS

| SPy{Ifofr’Pep :} o+ Py {200 > i} + Py (| SHI= e}
Seprtept et eite, ) |

Hence -the fact Zek<oo 1mphes the convergence in probablhty of

E(X "ak)
‘In order to show the converse, 1t is sufficient to prove that if there
exists a sequence {glk=1,2,.-.:} so that > (X;—a,) converges in

probability, :we have 3 (1— ‘Ilfk(l))<'oo As I (X.—a,) converges in
probabilty, we have R ST

Hklzm.]f;(t)exp( - iakt)—')],

@ That ds,in'the first place, define ay, (k=1, 2, ) so that the medians of X, —
axi(k=1,2,0e00e¢ ) are zero, and next define ay, _; (k=1, 2, ) so that the medians of X, —
ay +Xw, 1—a1v -1 (k=1, 2, ) are zero, etc. :
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(n, N-=») uniformly for every finite interval. Whence we see
YD1 (n, N->o)in the same sense as above. Therefore there
exists a number N, such that II.7. (f(0)*=1/2 for n, N=>N, and

0<¢<2. Hence by (F. I. 5) we get
Z Igy=n+]{1—\],}‘k(1)} SK{I = \PFm-l* ------ >!‘FN(]-)}

for n, N>N, where K is a constant, from which by LT wr(1)—1
(n, N— o) we have >,2,(1—-¥r (1))<oo This completes the proof of
Theorem 3. 1. 2. : :
Theorem 3. 1. 2 can be readlly reworded as follows
Corollary 3. 1. 1. A mecessary and sufficient condition that there
should exist a sequence {aklk 1,2} so that S(X.—a.) converges in
‘probability is

(1Y () <o

for every h>0.

Here we remark another criterion of convergence of the sums of
independent random variables according to the notion of P. Léyy @
and T. Kawata®™. As V¥,  ....r(h) increases with » and decreases

Fpar

when N increases, we can deﬁne’

Vi) =lim ¥s y.xr,(B)
N-yoo

‘\I/*(h)=lim Vi(h).

Concerning ¥*(k), there exists the followmg theorem.

Theorem 3. 1. 3. Y*(h) is identically 0 or 1. If ‘P*(h)=1, we have
a sequence {aJk=1,2,:..... } so that 3(X,—a.) converges in probability. If
V*(h)=0, then there does not exist such a sequence.

§ 8. 2. The three series theorem and the related theorems In
the first place, we shall consider the following theorem.

"Theorem 3. 2. 1. A necessary and suﬁ'iczent condition that

(3.2.1) E{Xk .}

should converge in probablity and_-

Gy P. Lévy, loc. cit. 6).
@ T, Kawata, loc. cit. 2_).
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(3.2.2) X, -0 (k>o)

in probability is that -

(3.23) >{1- cI)p,t(l)} <o,
and ’
(3.2.4) ak——>0,_ (k> o)

where e Fux)=Fy(x+a) and ak=Sl xdFl(x).

Proof. Sufficiency. The tendency to Zero in probability of {X:}
as k—oo follows easily from (3.2.4) and 1=, (1)>0(k—co). By (F.I 6)

(325)  Zwlf(fexp(—ita)— 1=+ 20|+ ) Zilun{l= @ (D}
Since we see by (3.2.2) and (3.2.5) that

|log ILY,.,.f(£)exp(—ita) — Zulun { fi(t) exp (—ita)— 1}
<> nﬂlfk(t)exp(—ztao 112

for sufficiently large »n and N(n<N) we have -

(3.2.6) I1%,4.fi(d) eXp (—ita)—>1, (n, N—>co)
uniformly for every finite interval. 'But we have

(3.27) fi(t) exp (—ita;)= fi(t) exp {- it(a:+ @)}
and | T ‘

T R BT U

ail= | x| <] S‘f‘“"(x,—@)dﬂ(x)}

éj‘ak—dgs dFi(x)I lS vxc;Fir(ajr)_ak"

|z nk]<l lz-akISI
<|a| S dF,(x)+(1+ lakl)S _dF(%)
l@-a, |>1 e A I&l>1-lag|

<l | aFio+a+ial| | dF.

|z|>1
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By the assumption (3.2.4) we have |a]<1/4 for sufficiently large
k=N,>0. Hence

o1 S
'la’fl_'Z

Hence by {1, (1)f <00, we see

dF (%) + % S dF(x).

lz]>1 || >1/2

(3.2.8.) Selal <o,
Since by (3.2.6) and (3.2.7) we have
P{3F, (X —a.—a}|>e} =0, (n, No>x)

for any ¢>0, we obtain the convergence in probablity of >{X,—a,
—a,} and so D{X,—a}. '

Necessity. By the tendency to zero in probablility of {X.}, we
see (3.2.4), Hence by (F. I. 2) for sufficiently large # and N(N>#n=N,)

Eklznﬂ {1 —"I,Fk(l)}ZRZk{nﬂ{l - q)i"k(l)}’

where R is a constant. While by Corollary 3. 1. 1 we have > {1—
¥y (1)} <o, from which we obtain the convergence of 3 {1—-®s(1)}.

Theorem 3. 2. 2. The necessary and sufficient condition of Theorem
3. 2. 1. can be replaced by the following

(3.2.9) S{1—®x(1)} < oo
and ‘
(32.10) - M,—0 (k—>),

where M, is the median of Fi(x) and F¥x)=F.(x+M,).

The proof is almost analogous to that of the previous theorem
except the following fact. Under the assumption (3.2.8) and (3.2.9),
by (F. 1. 6) we see Ve )

2| FE(t) exp (—ital) - 1=("+20e| + N ni{l= Prb(1)),

- where

f;é(t)= Sw eltmdF;cg(x)’ | a;k= Sl xdF;k(x)- o .

—co .

Hence we Have for sufficiently large # and N (N >n2N0)‘
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i

[log T Xosr f(8) exp (—ital) = XL, {itaf) =1}
=Ll FE() exp (—ital) - 1P
Hence
5 fE(E) exp (—itad)—1, (n, N—->oc)
uniformly for every finite interval and so for any ¢>0
(3.2.11) P >N (X - M —af)| =€} -0, (n, N-> o).
On the other hand

M+ap-al <Ml | are+a+an | am

I>1-] Jl]c

=pif aricrasan] aricy

lz|>1
and as by (3.2.10) we have |M;|<1/4 for sufficiently large k=N.>0
we get

25{1

Mo+ ar-a|= L1} + 21— 0px(1))

(3.2.12)
<7{1-=P,x(1)}.

Hence we see X|M,+af—a,| <=, from which by (3.2.11) we can con-
clude the convergence in probability of >(X,—a,).

Theozem 3. 2. 3. A sufficient condition that (3.2.1) should converge
in probability is

(3.2.13) SH{1=2, (D} <o,
and it is also nécessary if the condition

(3.2.14) F(+0)>2>0, Fi(=0)<1—», (0<r<1)

is satisfied.
Proof. Sufficiency. By (F. 1. 6) we see

(3.2.14) 2l @O —=1=@E 421 + 425" {1 =P (D},
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. 1 . .
where fi(t)=/f.(t) exp (—ita,) and a,= S xdF(x). Hence (3.2.13) implies
-1

that
2l i) =110, (n, N>oo)
uniformly for every finite interval. Since
llog 151 fi(#) = 2B (Fi) = IS 2| f1() =1

for sufficiently large values of # and N, we see II,%,..fi(t)=>1 (n, No>x)
uniformly for every finite interval. Hence for any ¢>0

P> (X —a)| >e} >0, (n, N>x)

which shows the ‘convergence in probability of S(X,—a,).
Necessity. By Corollary 3.1.1, the convergence in probablhty of
(3.2.1) implies >{1-¥ r(1)} <. Hence for any ¢>0

% A1 ZZe 1=V, ()20, (ko)

where X,=X,—-X,, X, and X, being independent random variables
which have the same distribution Fi(x). Hence as

P{|Xi|z¢} ?P;{IXE ~X=e}
=P, [ X~ X,Z) \(Xi=0)]} + Py {(X — X< ) ~(X:20))
= P {(X,Z ) A(Xi=0)} + P {(Xp= —e) ~(X:=0)}
>AP,{|X,|=e],

we see P,{|Xi|=e}—0 (k—>) for any ¢>0. Hence by (F I. 3) for
sufficiently large values of # and N (n<N)

Eklgnﬂ {1 _'\I’Fk(l)} ZRZ':/XM: {1 - (I)Fk(l)}»

where R is a constant, which completes the proof.
According to A. Khintcine—A. Kolomogoroff®, it'is known that
the simultaneous convergence of the followmg three sevies

(3 A. Khintchine —A. Kolmogoroff, loc. cit. 7).
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(3.2.16) S\ S (), S S #dF(2) ~( S ) ngFk(x))z}
and
(3.2.17) zk:,s xdF(%)
12| <1

is'a necessary and sufficient condition for the convergence in pro-
bability of 3X,. By appealing to our typical function, the above
condition can be replaced by the following equivalent condition

(3.2.18) >{1=®p D} <o
with the convergence of (3.2.17), where F{x)=F,(x+a) and a,= Sl x
. -1

dF(x). That is,

Theorem 3. 2. 4. A mnecessary and sufficient condition for the
convergence in probability of > X, is the existence of (3.2.18) together
with the convergence of (3.2.17).

Proof. Sufficiency follows ‘clearly from Theorem 3.2.1. Con-
versely ‘the convergence of >{1—®, (1)} is obtained from the
proof of Theorem 3.2.1. Hence we have, using again the proof of
the same theorem (putting a= Sl x dF(x)),

1

log ILZ,., . fi(?) exp (—ita)=log L% fil(®) —'it(zkgn-flak)
—)O, (n, N—-) oo)

uniformly for every finite interval. While by the assumption we
see log %, fi()=0 (n, N>) in the same sense as above. Thus
we can conclude the convergence of >a.

Corresponding to Theorem 3.2.2, we can give

Theorem 3. 2. 5. A mecessary and sufficient condition for the

convergence in probability of > X, is the existence of (3.2.8) and (3.2.9)
together with the convergence of 251 xdF(x).
The proof is almost clear fI'OI’I-ll Theorem 3. 2. 2.
Chapter IV. The law of large numbers.

§ 4. 1. The law of large numbers. Let (| X,.|| be a system of
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random variables defined by (2.1.1). Then it is called that [|X,.||
obeys the law of large numbers if there exist two sequences of real
numbers {0<A,lz=1,2,} and {—o <B,<o|#n=1,2,-...--} such that

4.1.1) P{[(Xu+ X+ o+ Xon ) An— B, 290} =0, (n— )

for any »>0.

Therem 4. 1. 1. A mnecessary and sufficient condition that ||X,.||
should obey the law of large numbers is that there exists a sequence {A,>0|
n=12,..... } satisfying

(4.1.2) 2 {1=¥, (A)} -0, (n—0)

nmn

Proof. Necessity. From (4.1.1) we see
(4.1.3) o I (A1 (> 0)

m=]1
uniformly for every finite interval, and so there exists N,>0 such
that 1% |f..(t/A)*=1/2 for n>N, and 0=¢{=2. Hence by (F. I 5)

m=1

we get

S {1~V (AN <K{1—~Yr our,, (A}

for n>N, where K is a constant. Whence (412) clearly follows

from (4.1.3).
Sufficiency. It is easily shown that (4.1.2) 1mphes that
(4.1.4) 2 (1Y (n4,)} -0, (n—> )
for any 5>0. Let X,. X,(n=1,2, ; m=1,2,-.----m,) be mutually
independent random variables and suppose X,,,,. and X,. have the
same distribution F,,(#=1, 2,------ s m=1, 2,000 m,). And _yfurther;norg

put X,,=X,.—X.. Then by apealing to (F. I. 4), we have
(4'1'5) {1 7 (")An)}>{1—‘IIFm*"--"*an”(nAn)}

m=-1 nm
= 2P|, XonlZnAL).
Hence, denoting by M, the median of F,*F,*---- *Foun, from

S Xan=3n X — My —(Sn X — ~M,),

m=1
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we have

P{|=" Xl=nAL

ZPY{(E:::ZIXMH_M" _(zz’llxnm —M”)ZnA.,,),\(Z"‘n Xnm"M;< 0)}

m=1

+ P‘/ {(E:Zthnm _Mn _(Emn Xnm - Mt)z nAn)ﬁ(Em" Xnm "M; > 0)}

m=1 el
1 "
= 'Z—PY{lzmilen —M,lZnA -}.

Consequently (4.1.1) follows from (4.1.4) and (4.1.5).

§ 4. 2. Some special cases of the law of large numbers. In the
first place we congider the following theorem.

Theorem 4. 2. 1. A necessary and sufficient coudition that there
should exist a sequence {A,>0|n=1,2,----- } so that for any ¢>0

(4.2.1) P,{} o (X

“ rdF (%), ZeA,,} -0, (1> o)
—A4n |
and for any ¢>0

(4.2.2) P,{]anIZeAn}—)O, (n— )

uniformly for 1=<m<m, is that

(4.2.3) my (1=, (A)}20, (1)
and "
(42.4) = S‘ dF o An2)—0 (n—>0)

. -1 :

unifo;"mly for 1<=m<m,, where F',.(x)=F (x4 A.0wm)
Proof. Necessity. By the assumption (4.2.1) we see

I fatl A1, (1>eo),

uniformly for every finite interval, where

FintiAN= FutiA) exp (~itaw) = | = wdF ().

—oo

Hence, since 1™ | f,.(#/A,)—~1 (n—>c2) in the same sense as above,
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we have N,>0 such that II"s |f,.(¢/A.)'=1/2 for n>N, and 0=¢{=2.

m=1

Therefore, recalling (4.2.2), by appealing to (F.I. 2) and (F I.4) we
obtain that for #>=N,

2, {1—‘1u,.,n(An)}<RZjZ=1{1 ~¥s,, (A}

<RE{1~Y; g, (A}

where K and R are constants. Hence (4.2.3) follows from

1Yy, s, (A= S e (LTI | £t/ AN
-0, (n—>x).

Sufficiency. By (4.2.4), there exists, for any >0, N,>0 so that
|@,.|<€¢/2 uniformly for 1<m=m, (n>N,). Next it follows from (4.2.3)
that 1——<I)F,mn—+0 (n—o0) uniformly for lsmsm,;. - Hence for any ¢>0

@, (A2 U+ D} | AF (A= {e(e +0}{ ariam

|z ]>¢/2 | @ | >e—€/2

2 ) | dFalhirsdian= {e 1 +4)}§ AF (4.2

|Z4ag, > [z]>e

which shows(4.2.2) uniformly for ISmSm,,fas n-o. By (F.L6), we
see : -

(4.2.5) lfnm(t/An) exp (— zta,.m) 1I<(t2+2ltl+4)2'n'i_l{1 — &y (A}

where fin(t/An)=Ffa(t/Ar) XD (—-ita,,,,,) anda,’,,,.:S xdF,.(A,x). Since
we see by (4.2.3) and (4.2.5) | R
log T, Fin(t/A) XD (—itai) = S Fn(t/Ar) ex0 (=ital)~1]]
S Fanlt] AL exp (—ital) =11
for sufficiently large n, we get »
(4.26) I, fun(t/ As) €Xp (= itam)—~1, (n>e0)
uniformly :fofv every finite interval. We have

(42.7)  fult/A) exp (—itau)=Fum(t/A:) exp { —.it(dn;n+a;m)}
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and for #=N,>0

|G| = \S xdF;.m(Anx){

<la _;’”“S dF,.(%)

[ |z~a [Sl

<l S AF(As)+ 214 |an]) S dF (Ao

fz|>1 jz{>1-]e

+ ‘S xanm(Anx)"anm

a=epn |51

nml

<2e(1— @y, (A))+ 41+ €)1 26+ 26N 1 =Py, (A,).
From (4.2.3) we o'l'Jtainw
(4.2.8) S (gl o0, ().

m=1

Since by (4 2.6) and (4 2.7) we have
P, {]2)"” (Xnm/An—anm — Q)| >€}—)0 (”"’00)

m=1

for any ¢>0, we get, by applying (4.2.8), (4.2.1).

Corollary 4. 2. 1. (A. Bobroff*”). Suppose that || X .|| defined by (2.1.1)
is a system of positive random variables. Then it is necessary and sufficient
Sor the existence of {A,>0|n=1,2,-.--:-} satisfying. that for any >0

429 R4 1m0, (1)
and ' ‘ . o '
(42.10). P,{X,,,.,>GA,,}»-+0 (100 .

uniformly for 1<m5m,. is that there exists a sequence of posztwe numbers
{C.,>0|n=1,2, - } satzsfymg

(4.2.11) S, (1=Fun(C)} 20, S0 = S »F"m(x)l)d’f,:‘:”

P\roof‘*". (4.2.11) can be replaced by

GO A. Bobroff, Uber relative Stablitit von Summen positive zufdlliger Grdssen
(Russian), Uchenye Zapiski Moskov, Gos. Univ., Nomograﬁja, pp. 191—202, 1939.

@ Recently T. Kawata showed another proof of this theorem in a different angle
and the author also gave another proof. They have not ‘bgen published.
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(4212) 3" (1-F.a(C.)}~0, zé S KdF (%)~ .

nvo

In fact, by partial integration, we have

MCS (A =F,.(x))dx=2"n ,{(1 —F,(C)+ = z S xdF,,,,,(x)}

nvo

which shows the equivalency of (4.2.11) and (4.2.12). First, we suppose
(4.2.9) and (4.2.10) uniformly for 1<m=<m,, then (4.2.9) is a special case
of (4.2.1) satisfying

(4.2.13) 1 2::1 . SA" xdF, (x)=1+0(1), (ﬂ-» ).

Hence we have (4.2.3) and (4.2.4) uniformly for 1<m<m,,, from which
for any >0

2o {1 =Py, (A)}= 7S

1 + Q et 1y =1 {1 F"'ll(7,A1l)} _)0 (n—>oo )

and for sufficiently large »
|G| = {S AP (A %) '| =
0

uniformly for 1<m=<m, Hence for sufficiently large »
Sra {1=F: (nA)} =" {1=F,. (240 + Anun)}
. 23" {1—Fo(2n4.)},
from which there exists a sequence {7.>0|n=1, 2 ------ } so that
(42.14) 2 (1= Fun(n:42)} >0 and  5,-0.

Then ‘We have

(4'2.15) . 1 Zmn S”w‘lﬁxdF"m(x).—)oo, H—>00,
nnAn m=1 0
For, otherwise, there should exist a subsequence {n;|i=1, 2.+ } and

a constant M satisfying

1 m,. F‘”n{‘n‘-
M= — Em':‘ls XdF (%), 1=1,2,-
nn‘ n; 0
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Hence

n"iM + 2:’21 {1 —F”L’“(,]"iA"i.)}

= 5[ dE 04 (] | aPo)

'7n n
m

>2mm1{8 n; '"x/Aﬂ dF,, m(x)_}_ S]ru x/A,, dF,, m(x)}

n Anl

= 2::,-2.1 S-',,zx/ A,dF,,(x)-0, (i),
0

which is contrary to (4.2.13). Thus putting 7,4,=C, in (4.2.14) and
(4.2.15), we obtain (4.2.12).

Conversely suppose (4.2.12). Then putting

Uﬂ
A= z;:ng #dF (%),
[
we Ssee

A Cy -
Loz {"21C.F (5>
Cn m=1 b

m, -]__— m, 1 n i —]; A, N .- . OO.
2,,. ST S xdF nm(x) > { nS xdF,,(x)+ A,,Scnxdp"m(x)} -1, (n—> ),

and furthermore

.

B _ 1% 1 (4 o a
@ 3N )= 1 "5aF )+ 3 | 2F ()=o), (10 )

[ n

unifor.mly for 1<m<m, (The latter half of the above relatlons is
nothing but (4.2.4)). Hence

S (-0, (AN =3 (e ataF @+ T P

ﬂ ﬂ nm

<3 ([ - AayiaiaF @ § aram)

=3 (| w1 asF i)+ { aru)
0 Ay
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=3 (" warar o (A (] aFao)

“n

Moo

<C,/A,+ 3" {5 dF ,,,(x)+S ) anm(x)}

-0, (o).

which shows (4.2.3).
" Corresponding to Theorem 4.2.1, we obtain the following theorem :
Theorem 4. 2. 2. The necessary and sufficient condition of Theorem
4.2.1 can be replaced by the following conditions :

(4.2.16) St (1=@,% (A,)} =0, (n>0)
and
(4.2.17) M,,/A~0 (n>o)

uniformly for 1<m<m,, where M,, is the median of F,,(x) and F}, (x)=
Fnlll(x+Mﬂm)
The proof is almost analogous to that of Theorem 4.2.1 except

the following fact. Under the assumption (4.2.16) and (4.2.17), by
(F.1.6) we see

S £ (1A exp (—itat, )~ 1<+ 20t + 45 (1—0,% (4],

where

Fa)= S e dF % (AX), @ = S %dF%, (A,2).

Hence we have for sufficiently large values of #
log 11" f4.(t/A.) exp (—itai ) —2e {fin(t/Ar) exp (—itag, ) —1}]
< |f 5 (t/A,) exp (—itaZ,)~1]
Hence -
e fan(t/A,) exp (—ital, )>1, (n—=x)
uniformly for every finite interval and so for any >0

(4-2-18) PY{IE;:tl(X""' —Mnm)/An—a:fm ] > e} —’0; (n“'>°° )-
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While
M,.|{ 1
« +a’9'em anm i <l e dan x)+ ’ xdF""‘ x SxdFﬂm X
| A l An 3.2 Jlnmlg.d,? An | 2- M (|S?4 A lw|<A( )
<Woel § a0+ (1+ 22l aF(o)
n |z }>4, lzl24, - 1M1

IM ml Sd * |Mml S ¥
<\ F,.,,,(x)+< + ) dF%, (x)

n 12>, 1zl 24, -2 M.
and as by (4.2.10), we have |M,.|<A,,/4 uniformly for 1<m<m, and for

sufficiently large values of #=N,>0, we get for n=N,

Jgnm_a;m < (1= (AN} + 2201~ (A}

ﬂm nm

—Qyun

S7{1 —'q):fm (An)}'
Hence, it follows from (4.2.16) that

M.,
A,

2

+aj:m. —CQun } —)0, (n—)oo )’

from which we can easily conclude (4.2.1).'
Theorem 4. 2. 3. A sufficient condition that (4.2.1) should exist

is
(4.2.19) " (1=®p, (A)}-0, (1),
and it is also necessary if the condition
(4.220) Ful +0)21>0, Fo(—0)<1—2, (0<a<l)
1=m=m, n=1,2,.--

is satisfied.
Proof sufficiency.- By (F. L. 6) we see

(4.2.21) 2 | fan(t/Ay) €XD(—it@un) = U<+ 2[t] + 4) 2000 {1—Dr, (A}

m=1 nm

Hence (4.2.19) implies that
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Zm ’fu u(t/An) €xp ( th,‘,,,) -1 l—->0, (n_') OO)

m=1

uniformly for every finite interval. Since
l IOg H:: lfmn(t/An) eXp ( ztanm) 2:: ‘{fnm(t/Au) eXp ( ztaﬂm) 1}|
52;:1,1151,»»0/14") €xp ( —'itanm) - llz

for sufficiently large 7, we see II"s fu. (t/A,) €xp (—it@um)—>1 (n—> )
uniformly for every fiuite interval, which shows that (4.2.1) holds.
Necessity. By Theorem 4. 1.1, (4.2.1) implies X" {1-¥, (A,)}—0

m=1 nmn
uniformly for 1<m<m, where X,.=X,.—X., Xum and X,, being
mutually independent random variables which have the same distri-
bution F,,(x). Hence in the same manner as in the proof of Theorem

3.2.3, we obtain P,{|X,.|=e}=>rP,{|X,.]|=¢}. Hence we see that
P,{|Xn|=¢} >0 (n—>c0) uniformly for 1<m=m, and for any >0, from
which by (F.I. 3) for sufficiently large »

Em 1{1 \Ill'”m(A )} >RZ;:=1{1 —q)l'nm(Au)}

where R is a constant, which completes the proof.
Corollary 4. 2. 3. (W. Feller)}™. A sufficient condition for the
existence of {A,>0n=1,2,------ } satisfying (4.2.1) for any ¢>0 is

o aFu@o0 @)

[z]|>d4n

(4.2.22)

Lt earr-0 o
A” |z | Sdp

‘and it is also necessary if (4.2.20) is satisfied.
Chapter V. The infinitely divisible law.

§ 5. 1. The definition of the infinitely divisible law. The defini-
tion of the infinitely divisible law may be generally described in
the following two forms:

(I) A random variable X depends on the infinitely divisible law
I, if for any positive integer # there exist independent random vari-

8 W. Feller, loc, cit. (8).
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ables X,, (1<m=<n) such that

(5.1.1) X=X, 4+ X, +X,.
and for any ¢>0
(5.1.2) P {|X,n|>€} >0, (n—>x)

uniformly for l<m<mn.

(II) A random variable X depends on the infinitely divisible law
I if for any positive integer # there exist independent random varia-
bles X,. (1<m<n) having the same distribution function such that
(5.1.1) exists.

The latter is immediately reworded by appealing to the charac-
teristic function as follows:

(III) The characteristic function f(¢) of a probability distribution
desends on the infinitely divisible law I if for any a (1>1>0) f(¢)
is also the characteristic function of a probability distribution.

It is evident that (I) follows from (II), however the converse is
not so clear. It has been shown by A. Khintchinet?, i. e.,

Theorem 5. 1. 1. (III) and so (II) follows from (I).

Before we shall show another proof of this theorem, we need
the following lemma.

Given a system of random variables [|X..,|| defined by (2.1.1), then
it is called to be individually negligible if for any ¢>0 (5.1.2) exists
uniformly for 1<m=m,,. '

Lemma 5. 1. 1. Let ||X,,,|| be an individually negligible system of
random variables having, respectively, distribution functions F,.(X) (n=
1,2,ee0; m=1,2,..---m) and if there exist §>0 and T >0 such that for
0<t<T

(5.1.3) I | (=8, n=1, 2,00 ,
then we have :

(5.1.4) llog T yn fun() —Zn [ Sount) €Xp { —it(@pn + 1)}

m=1

1+ i@y + )] 0.

¢ A. Khintchine, loc. cit. (8) .
¢(® This result holds even if we replace @,n with the median My of Fuu(z) and

L
oam With a¥, = f _, #dFun(-+ Mon)
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and
(5.1.5) > | funlt) exp { =@ +al)} — 1= +2/t|+4)C

uniformly for every finite interval and for an absolute constant C and
: ; _
for every t, where a,,— S‘ XdF (%), a;,n:S XdFinl%), Fin(®)=F(2+
-1 .

-1
,,,,,) and f,.(t) is the characteristic function of F,..

Proof<®, The fact that || X, is 1nd1v1dually negligible implies that
Fan()—1, (o) uniformly for every finite interval and m(1<m=<m,),
@n—0, (n—>o0) uniformly for m(1<m=m,). Hence we have easily
a,,—0, (n—>), from which

(5. 1.6) ,fnm(t) exp { —' it(anm + ai’l"')} - 1

uniformly for every finite interval. While from (5.1.3), by appealing
to (F.1.2) and (F.I1.5), we have N,>0 so that for n=N,

2;::21{1 - n)h(]')} <Rzm 1{1 —‘I’an(l)}

where R and K are constants. While by (F. 1. 6) we see
o ) Funl#) €xp { —i#(@an+ @)} =11,

S(E+2+ )20 {1-Pp, (D} +2/H+4)C

nt=

(5.1.7)

for every ¢ (—o <t<»), where C=RK. Hence for sufficiently large
n>N,>0 we get

Izmn Iog fnnl(t) z:n I—f‘nm(t) exD{ - zt(anm + anm)} 1 + zt(awn + anm)]l

m=1 m=1

Szmz Ifmn(t) exp{ —'zt(anm + anm)} - 1‘-'

SMax | fot) €XD { —it(@un+ @)} =1 | fun(?) eXp{~zt(amn+amn)} -1

| sm<smy
._<]_¥ax |fnm(t) eXp{ —Zt( nm+anm)} - 1'
xC(*+2|t| +4)

(€D} In the proof of this theorem, we may also replace aum with the median M,t,,,
of Fum(ﬂ’) and o'y with a,,,,,—-f xann(a‘l‘Mn,m)
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for every ¢ (—o <t<o). Thus, applying (5.1.6), we can conclude
(5.1.4).

Prooe of Theorem 5.1.1. From (I) there exists a system of
characteristic functions {f,.(f)} (n=1, 2,------ sm=1,2,----- , ) such that
fO=I1I1f,.(¢), n=1,2,------ . Hence we can take two constants §>0 and
T,>0 satisfying |f@)P =11~ |fun(®)*=8, =1, 2,......-for 0<t<T. Fur-
thermore from the individual negligibility of ||X,.|| (n=1,2,----- ;M=
1,2, ,n), applying Lemima 5. 1. 1, we have

(5.1.7) llog [ f(t) exp { =it (@ + @)} ]
=30 [ Funlt) €XD{ =@+ @10} ~ 110
uniformly for every finite interval of #. Next put
(5.18)  fUXD=M au(t) exp{ —it(@um
+a) +1=, =1, 2, e0n sm=1,2,eee,

then this is the characteristic function of A F, (¥4 @, + @)+ (1—2)
«(x), where e(x) is the distribution function having the jump 1 at 0.
From (5.1.8) and the individual negligibility of ||X,.|, we see

(5.1.9) QA =1 =N\ fru(t) exp{ —il(@ui+ @rn)} — 1|0, (12— )

uniformly for every finite interval of ¢ and m(1<m<n). Further-
more, (5.1.5) of the same Lemma implies

Dl fE) = U=SAZ | fanl(t) €Xp{ —H(@un+ am)} =1
<AC(E+ 20t +4).
Hence for sufficiently large values of #=N,
| 10g FEE) ~ St FEAO) — DIS Sl FRE) 1P
| SANC(#+ 2|t + 4) Max - | f9X)—1I.
Whence we 'have, by (5.1.9),
| St log f9E) ~ St SO ~1)120, ()

uniformly for every finite interval and 1<m<n. Therefore, from
(5.1.7) and FAE) = 1=n[fun(®) exp{—it((z,,,,.+ a,,)} —1], it follows that

I)\. log [f(t) exp{ — ith,-:](ahm’l' ar/un)}]—thl IOg ff&?(t)l
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=Inlog f(£) = 21 10g [FGXE) exp (i \(@n+ @n)}] —0

uniformly for every finite interval. From the continuity theorem
of P. Lévy we know that f*(¢) is a characteristic function.

§ 5. 2. A deduction of the canonical form of the infinitely
divisible Jaw. A deduction of the canonical form of the infinitely
divisible law from the definition (III) was given by A. Khintchine®,
we shall here show a deduction from (I).

Theorem 5. 2. 1. The canonical form of the law defined by the
definition (I) is uniquely representable by the characteristic function f(t)
having the following form :

(5.2.1) log £(£)=itA+ S“ (e"’”—l— itx \1+2° 5o,

- 1+x¥ x°

where G(x) is a bounded and non-decreasing function satisfying G(—oo)
" =0and A (—o <A<o) is a constant.

Proof. By the definition (I) there exists a system of charac-
teristic function f,,(¢), fi(£),++- s fan)(m=1,2,-+--.- ) which is individually
negligible and f(¢)=I1,"fu.(t) (n=1, 2,------ ). Hence we have two con-
stants 8>0 and 7,;>0 such that ' '

|FOP =1L fun(B)Z8, #=1, 2,-+e
for [f|<T, Whence, by appealing to Lemma 5.1.1, we have
(5.2.2)  |log f(#)~Zwil fun(t) €XP {~il(Gun+ @m)} — 1+ it(@um+a1m)]| >0
uniformly for every finte interval. Put ‘

¢n(t) = zmﬁl[fnm(t) eXp { _it(anm + av’zm)} "1 + it(anm +a1,1m)}]

= “ ‘itx_ — itx ]_-'*'_x2 . n S“v X 1 ’
' S‘_,,(e : 1+x‘-’) P2 dG"(x)th"‘"( _@1+x2dF"m(x)+a"m+7“"f>’

where

_<a \° W %
Cuey=Z || 2 dF i)

@ A, Khintchine, loc. cit. (13).
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and Flu(®)=Fum(%+ @+ @,n). Then by (5.1.5) of Lemma 5.1.1
| Pn(8) =8 i(Gn+ @an)| SC(E+2i8]+4), n=1,2,000s,
where C is a eonstfaﬂt. : On the other hand by (5.2.2) we see
(523)  RpoRlog @), (1)

uniformly for every fintie interval. Hence |[Rp.(8)| (n=1,2,---- ) and
log f()| are dominated by C(£+2]f|+4). This fact and (5.2.3) imply

that
5C=— S”e-=m¢n(t)dt= S” 4G (%) =G.()
(5.2.4) b -
=2 S: 11 AFu0)> = Soem log f(£)dt.
Now put

G()=— S:e-’sn log f(#)dt,

then we have G.(o)—G(x Xn—>x) and clearly G,(~«)=G(—xX=0;
n=1,2,- ) and a bounded non-decreasing function G(x) (G(—)=0)
such as G,(x)>G(x) (i->) at the: continuity points of G(x). As
(exp(itx)— 1—itx/(1+47)) (1+27)/2 is bounded and continuous functlon
of x for fixed t, applying Helly’s theorem, we obtam

S” (e“‘—-l— ztx 1+x 4G, ()

- (o )y

lpoot —o

uniformly for every finite interval. Hence by (5.2.2) we have a con-
stant A such that '

(5.2.5) Z’kﬂ{sm % dF"m(x)+a,‘m+a;,,.}—>A (i>oo).

1+x

However, we must here remark that the above representatlon of
logf(¢) is unique. In fact, put

A(t)=log f(t+1)+log f(t—-1)—21log f(¢) -
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- S“ e+ e ~21 1 T HaGla)
. Ty
=2 S’ "(cos u— 1)¥dc(u)
Fu;thefmore, put ) |

(5.2.6) H(u)= — S 2(cos u— 1)1+“d(;( 4),

then H(#) is non-decreasing and
S” dH(u)= —A0)= —~R log £(1).
Hence

A= — S” ¢ dH ().
From the unicity theorem of Fourier transform, We see H(u) is
unique and also G(#) by (5.2.6), from which follows the uniqueness
of A. Thus we completed the proof of Theorem 5.2. 1.

- § 5. 3. A criterion of convergence of the distributions of the
sums of independent random variables to that of an infinitely divisible
law. Given a system of random variables ||X,.|| defined by (2.1.1)
and suppose that it is individually negligible. Furthermore, let F,,
(%) be the distribution function of the random variables X, and
denote by f..(f) its characterlstlc functlon (rn=12,--+; m=1,2,..--..

m,). First we show

Theorem 5. 3. 1. Let || X,.|| be an mdwzdually negligible system
of random variables and if S=X"n X,. converges in Bernoulli’s sense to
a distribution function. Then this lzmzt Sunction depends on the infinitely
divisible law 1. ' .

This theorem was proved by A. Khintchine®”. But another proof
can be carried out in the same manner as in the proof of Theorm
5.1.1, and so we omit the proof.

The following theorem was shown by B. Gnedenko“‘” but it has
seme point of difference from B. Gnedenko’s theorem. We shall

a A Khinfchine, loc.‘ cit. (9).
)  B. Gnedenko, loc. cit. (16).
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show another proof from our point of view.

Theorem 5. 3. 2. Civen the infinitely divisible law I, with the
characteristic function f(t) which has the canonical form (5.2.1), and let
| Xl be an individually negligible system of random variables, then a
necessary and sufficient condition for the convergence of the sums
>rn X, to the distribution function of f(t) in Bernoulli’s sense is that
there exist a bounded non-decreasing function G(u) (G(—>=)=0) and a
constant A such that

CER VD e (OECCONNCE

(5'3'2) Eﬁ’ll{su i"+’~an r(x) + @t anm} ""A (’z_> o )
and

(5.3.3) >t S f_%dFylin(x)_; G(n), (n—o0)

at the continuity points of G(u), where Fo(x)=F,(%+ G+ Gw) =
X ’ 1
SI xdF,,(x) and a;m=g xdF, (% + Q).
-1 -

Proof®®. 1In the first place we remark that from the individual
negligibility of ||X,.|| we see

(5.3.4) ' )1, (n—> )

uniformly for every finite interval and 1<m<m,.
1. Necessity. By the assumption we have

(535) I fa®f@), ()

uniformly for every finite 1nterval Hence there exist §>0and 7,>0
so that for |{|<T,

I | fun(8)28, n=1, Qyeeees
Whence, by Lemma 5. 1. 1, we get

4 Even if we replace anm with ‘the median Mun of Fpm(2) and a/pm with @um=
1 .
f a @dFum(x+Mym), this theorem holds, the proof of which is almost analogous
to that of Theorem 5.3.2.
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|21:': ‘[.fnm(t) exD { - z.t(anm + a;nm)} - 1 + z't(anm"'!' a:r/un)] —IOg f(t)l
(5.3.6)

=[ (e=-1- 1‘”;)”;‘ 4G (#)+itSn 1(S_“i—+—~annl(x)+aam+an,,,)

—Iogf(t))-—vo (”"’00)
uniformly for every finite interval, where

G(#)=3"n S li‘ Y gp ().

And also by (5.1.5) of the same Lemma, we see 2 | fun(t) €xp{ —it
(@um+amm)}—1| is dominated by C(#+2[t|+4) where C is an absolute

constant. These facts imply
- R | -3
8C= Em-lg_.f_‘uxz Fo(x)
(5.3.7)
— (et (R ) exp{ i@+ @)~ T
0

by

_,_S:e-tmlogf(t>dt= [ (I a-cos tx)”"z () Jdt

0 -
— | acw=6(=)
which shows (5.3.1). Next by the compactness and the fact

8C=S"

me=1

S" - 1-"‘ FdF(8), n=1, 2,
we have a subsequence {n,} and G*(x) (G*(oo) G(oo) G*(—-oo) G
{—)=0) satisfying . :

- Gw==m (" j AP} (£ GH ), (iose0)

at the continuity point of G*(). Hence w'e‘ have, applying Helly’s

theorem
= [ itz itx 1+x
[ (1= )@
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. Sm <el¢1:v__1_— 1tx
ired_, 142

from which hy (5.3.6) we abtain a constant A* so that

m=1

> {Sl L _dF.5)+a, m+a,,m}—»A*

However, by the unicity of the representation of logf (f) we see
G*(x)=G(x) and A=A*. Thus we can conclude (5.3.2) and (5.3.3).

2. Sufficiency. By the condition (5.3.1) we have a constant M
such that

S S” = —-an,r(x)SM A=, 2,0eee

m=1

and from the individual negligibility of 1 X |, appealing to (F.1. 1)
aud (F.I.2), it follows that for =N,=0

S (1=, (D} SRS (1= (D} <2RS % {1~y (D}<2RM,

m=1

) .
where F, . (x)=F,.(x+a..), a,;,,.=S xdF,,(x) and R is a constant.
-1 '

1
Whence by recalling (F.I.6), denoting a;.,,.=S xdF ,.(x), we see
-t

> | fan(t) XD {—iH(@um+ am)} =1
<@+ 20+ )T {1~p, (1}=(+21t] + 4)2R M.
But by (5.3.4) we have
|20 108 fanlt)— 20 [ frm(t) €XD {-—zt(a,.m+a,.m)} ~ 14+ (@ + @)
<> Ifnm(t) exp { —zt(a,.m+anm)} ll

for sufficiently large values of n. Hence (5.3.4) imply

(5.3.8) 2 log Fonlt)— ELI[fnm(t) exp {zt,_(a,.m + anm)} =14+t @un+ @pn)]

uniformly for every finite interval. On the other hand, by (5:3.1),
(5.3.2), (5.3.3) and Helly’s theorem, e

mn [fan(t) €Xp { —it(@n + a,.,, )} 1 +iH @y + a,,,,.)]
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(1 itx I+x*
“S_,(e 1- 2 )2 aG )

+it S (S = anm(x)+a,.m+anm))
- S:(e —1- 1:{’;) L% 9G(x) +itA

in the same sense as above, where

Go=3m, {1 ar i),

1+ :
Hence we have, by (5.3.8),
log I e fun(t)=20n 108 foun(t)

= f iz itx \1+x°
,_)S_w(e 1- N2 a6 +itA=log £(1)
uniformly for every finite interval, whlch complete; the proof of
Theorem 5. 3. 2. _

§ 5.4. The partial limitlaw. Let {X,|n=1,2,.----. } be a sequence
of independent random variables all having the same distribution.
Then if there exist two sequences of real numbers {4,>0n=1, 2,.-..- |5
{0 >B,> —cc|n=1,2,--+--- } and a sequence of positive integers {#,]
m=1,2,......} such that the distribution of

(541 ‘ ;}.(EZ‘,le*Bn)

tends to a distribution F(x)in Bernoulli’s sense as z—»oo 1t 1s called

that F(x) depends on a partial limit law. Any partlal lumt law is,
by Theorem 5. 3. 1, an infinitely divisible law. And the converse is
also true. This latter fact was first given by A. Khintchine®® and
next W. Doeblin® gave another proof. But there remains in his
proof much to be desired. Here we show an proof in W. Doeblin’s
line more strictly. : A

@ A, Khintchine, loc. oit. (9).
4 W. Doeblin, Etude de V'ensemble de puissances d’\me loi' de probabllté, St.
Math., 9 (1), pp. 71—96, 1939.
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Theorem 5. 4. 1. Let F(x) be the distribution function depending
on an infinitely divisible law, then we can select a law L, so that
the distribution of (5.4.1) tends to F(x) in Bernoulli’s sense as i—co,
where X, X,eee-- y Xy oooeee mutually independent random variables all
depending on L,

Proof“, Let f(t) be the characteristic function corresponding
to F(x). Then from the definition (I) there exists a system of
characteristic functions f,,(¢), f. (&), » fu®) (=1, 2,000 ) such’ that
FO)=IL", fo(t) and f,.(t)—1, (n—>o)uniformly for every finite interval
and m(l<m=<n). Hence by Lemma 5.1.1 we get

(5.42)  Jlog f(H) =i funlt) €XD { —~it(@un+ @)} =1+ it{@um+ @n)]—0
uniformly every finite interval and for every #(—o <t< )

(5.4.3) met| fam(t) €Xp {—i8(@unt @)} — 1| =(£2+2[t] +4)C
where C is a constant and «@,, and a,, are the same as is the pre-

vious section. Now we consider the following function:

log o)=372 " She1 | (@ ~1dGC(x/A), A=2",

where
F(x) for |x|<mn,

Gnm(x)=l Fi(n) for x>n,
Fin(—~n) for x< —n,

and Fo(x)=Fu{x+a.n+a,,). Then ¢(f) is clearly the characteristic
function of a probability distribution, in fact, ¢(¢) depends on an
infinitely divisible law. Since, in the equahty

27 log @(t/A) ‘

sz - Dd6n (A (=1)

+zm-1S (€= 1)dGm(/A) (=I)

6 * In'the proof of Theorem 5. 4. 1, we may also repace 2nm with the median Mnm
of Fum (%) and @™ with a*;m. . .
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F2PSE e 2 S S“ (@4 1)dG (2] As) (=1),

we have
llllszn’23:12~“|tn% o S" |Kld G (%)
A
S22 RR k|t
> A,,I |
<gm+m-ms-mSwIg-tr ] —o(|f]), (—>o0)
and
\I|1=223 % .. k2 P =0(1), (n—x),
we get '

2" 10g gt/ An)— 2= S T (et l)dG;n,(x/ A.)

(5.44)

_ ‘2,,, log g(#/A)— S S” (€= 1)dGun(x) ’

=0, (n—>x)
uniformly for evéry finite interval. On the other hand, by (5.4.2)
and (5.4.3) we have :

8C=— s\ IR funlt) €x {—it(Gun-+ aru)} ~ 11

0

=~ % ”
= ;- anm
=2 S Lt *)

o S”e-tm log f(#)dt, (n—co).

0

Hence we have a positive number N so that

Lsm S dF,;:n(x>szz-ls 2 AFLn<y

Mme=]
2 112N (w1 =nl+ 2

for any e>0. Then we see



58 Kiyonori Kunisawa

n S AR (£)=S" S dF (%)< e

[z =2n |z =N

for n=N. Therefore,

| S {5 (¢~ Gl + i@+ @10))

St (e 1tita,t @) dF xS0
. ]

—oo

apylying (5.4. 2) we find

' Shet{|” (€7~ DdC (R it )| — 02 f1) i e

uniformly for every finite interval. Consequently (5.4.4) implies
|2 log [¢(t/A,) exp{it(@un+ a,n)/27}]— log f(£)| >0
in the same sense as above. Thus we see that the distribution of
S5 (X2 4+ (@t 0n)/2%)

tends to F(x) in Bernoulli’s sense, which completes the proof of
Theorem 5.4. 1.

Chapter VI. On the estimation of the magnitudes of the sums
of independent random variables.

§ 6 1. The strong law of large numbers. Let {Xi|k=12,.- . }
be a seugence of independent random variables and denote by Fy(x)
the distribution function of X, (k=1,2, ----- ). Then it is called that
{X,} obeys the strong law of large numbers if we have

(6.1.1) lim lzg,,(xk— S xdFk(x)) —0 and lim X,/n=0

n-yoo el

with probability 1.

Sufficient conditions for the validity of this law where given by
many authors. Here we give a theorem showing a sufficient condition
from our viewpoit w1th0ut proof. ‘

Theorem 6. 1. 1. " Let {X,|n=1, 2 ------ ¥ be a sequence of independent
random variables, then a sufficient condition for the existence of the strong
law of large numbers is that there exists either of the following condi-
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tions :

(6.1.2) S {1=Pp(n)} <o
and

(6.1.3) S (1= @ (m)} <os,

where F.(x) is the distribution function of X, (n=1,2,-.--- ), Fix)=F,
(x+na,) and a,= S’ xdF, (nx)

-1
Next we shall search for the case in which (6.1.2) is a necessary
and sufficient condition.

Theorem 6. 1. 2. Let {X,|n=1,2,------} be a sequence of independent
random variables all having the same distribution F(x), then a necessary
and sufficient condition that the strong law of large numbers should hold
true for {X,} is

(6.1.4) : S {1-DP(n)} <eo

We need the following lemma for the proof.
Lemma 6. 1. 1. Let F(x) be a given distribution and let {m|n=1,
AT } be a non-decreasing sequence of positive numbers. Then

S {1—®,(nr,)} and 2;‘;’1S dF (%)

|z | 20ty

are simultaneously convergent or divergent.

Proof. As

S\ dF(x<o

|z | >nry

follows clearly from
S {1-Px(n7,)} <,

it is sufficient to show the: conyerse. Without loss of generality
we suppose 1'1>1 Now put-

I“IZﬂfn

then we have, by the assumptlon, S= 81+8 +~---.--S,,+ ------ i
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S xdF (%)< oo,
then we see

S {1- <1>F(n>}>2,,-1_ S XdF (x)< oo

Hence we may consider the case:

S“’ XdF (x)=oo.

— oo

By partial integration,“?

S ¥ dF(x)= _nzf,as dF(x)+ZS””_’vde dF(x)
[z |=ntp 0

|z | >nTp jz|>v

<2 S"’”vdvg dF(x)SZZZ_lk-rkS dF (%)
0

lz|>v te]>CG=-1D7,_4

=22’~1-:k7'k3k-x-

Hence

v 1 S x’dF(x)<22,.-1 zk-]krkak-

=1
" (n'T,,) || <nry 71)2
1

<22n-1 '—Zk-lksk 1—22 =1 —Zk— (k 1)8,‘ 1+28 n-l -7-[2

<22k'1(k I)Sk 121a-k——+43

S230 181+ 48=<68< 0.
Thus

Zn-l{l—ér(nfn)}<2..-l{ )28 #dF@)+ | dF(5)} <.

lzlSntn - [z | >nmy

Proof of Theovem 6. 1. 2. As‘sufﬁc1ency follows from Theorem

un Cf. H. Cramér, Random variables and probablhty distributions, Cambridge
tracts, 36, p.-41, 1937. T
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6.1. 1, it remains to-show its necessity. Since by the assumption :
P{X,/n—0}=1,
we see for infinitely many n’s
| X, |<n

with probability 1. Hence, applying Borel-Cantelli’s theorem, we get

ES dF ()< + 0.
lz|>n
Hence we obtain, by appealing to Lemma 6. 1.1, (6. 1. 4).

§ 6. 2. A problem of A. Khintchire. Let {X,|#=1,2,.----- } be
a sequence of positive mutually independent random variables all
having the same distribution function F(x) (with the corresponding
characteristic function f(#)) such that

(6.2.1) S”xdF(x)=oo

and denote by S, the n-th partial sum of {X,}. Then the following
problem arises, which was proposed by A. Khintchine“®, i. e., what
is the necessary and sufficient condition for the existence of {x(xn)}
such that '

.S
o ee(m)

with probablity 1? The object of the present section is to give an
answer to this problem under the assumption

(6.2.2) S “pdF(5)<CO) S"vdF(v),

where »>1and C(A\)—1, asx—1. Then we can formulate our theorem

as follows:
Theorem 6. 2. 1. A necssary and sufficient condition for the validity

of
P, {lim S,/n £(n)=1} =1

8 A, Khintchine, loc. cit. (21).
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(6.2.3) ...... < C" < Cn+1 Loavenns —>00, (n_-)oc )
(6.2.4) S {1-2(Cl <
and
(6:2.5) (_:”_ "%dF(x)—>c, (n—>w),
nvo

where r(n) monotonically tends to « as n—, and satisfies, for C(\)
defined by (6.2.2),

(6.2.6) e(A)=C(Me(n), (n=w,>0; A>1).

For the proof of Theorem 6.2.1 we need the following lemma.

Lemma 6. 2. 1. Let {X,|n=1,2,-----} be a sequence of positive

mutually independent random variables all having the same distribution

F(x) satisfying (6.2.1), and let {C,|\n=12,-+-- } be the sequence defined

by (6.2.3), (6.2.4) and (6.2.5). Then, for any >0, if nis sufficiently large,
we have _
P,{

" where K is a constant.
Proof. Put

S,—n S””xdF(x) i‘z n Sc“xdF(x)}'sKnu —,(C.)}

a,= SanxdF (%),

0
then from (F. I. 6), we see
7l £1(¢/C) — U=n(t*+ 218 + 9){1~ @x(C)},
where. N . :
F@#/C=f(t/C,)exp {—ia.t/C,}.
Hence by (6.2.4) T
B F(HCH=1—0, (n—>e0)

uniformly for every finite interval. Whence for sufﬁciently large
values of # : .
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Inlog f'(#/C.)—n{f'({/C.)—1}=nlf'(#/C.)—1]"
Therefore we easily have
FH/CY=1"(t/C.) exp (~inat/C)~1, (n—>co)
uniformly for every finite interval. Now put F(x+e,)*=F,(x) and
a,= Sc:nxan(x), then paying attention to |a,.|S-;—C,L for sufficiently

large values of n(=n,), (F. I. 1), (F. L. 2) and (F. I. 4) imply that for
n=n,

P,{|S.—na,|>C,}<P,{|S.,—na,—a,|>C,—|a,|}

= —x—i)_ 4 = 1 CDF T +a,
zs_w(c,‘—la,,l)% AF(x+e,)<8{1—®,, 0 s(C)}

<8R}1 —¥5 0t C.)}<8Rn{1-Y(C,)}
<16Rn{1—®C,)}
where R is a constant. On the other hand, as
Clg, 1
na, S xdF (%)
0

-0, (n—roo)

follows from (6.2.5), we get, for any >0, C,/na,<¢/2 (n=n,). Con-
sequently

__—11>e/2 <Kn{1-®(C,)}
na,

pl
P

where K=16 R. - :
Lemma 6. 2. 2. Let' {Xklk 1,2, , n} be a system of independent
and symmetric variables and put S,=X,+X;+ - +X.. Then if

P{|S,|=a}=<1/3,
we have
St P{| X 226} < 12P,{|S,| = a}.

This lemma was given by J. Marcinkiewicz®®,

9 J. Marcinkiewicz, loc. cit. (15).
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Proof of Theorem' 6. 2. 1. In the first place, choose a sequence
{m|i=1,2,-ce } satisfying that for fixed o(>1) and 8(>0)

(6.2.7) (= Dm<qy<mfn - (y>1; i=12,-..)
and

(6.2.8) n<s (i=0,1,2,--),
then we see

-(6.2.9) Motk () ma(n) >y ((=0,1,2,---)
and

Ry 1b(Migr) _ (Mir—1 £(7441) ’C(I‘”l)
(6210) Ml _( =24 ) S+ 8 ERIS(y+8)C()

where un=yn+1>n,,.4(:=0,1,2,------ )and v, & and ¢ will be determined
afterwards.
1°. Swufficiency. Put
R(5)= S””xdF(x),
0 ;
then by (6.2.2), we see that (6.2.6) is clearly satisfied and
nn(#)/Co=n Scnx/C,,dF(x)»oo, (1—>00).
0

Hence, for any >0, if » is sufficiently large, we have C,<nx(n).
Whence

P X =zne(nn}<P,{X,=C,}-0, (n—>cx).

=)
;ﬁij—-l Se)}

=P {:otsz mfn) 1+€)“( Ic(:z)>1—€>}

Now we have for any >0

PY{”5‘°< nl;%;’l)

—prlA "‘;‘(1<

Y| =0 n=n;
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w [ Sy S..

=pf A (e <1re)~(, >1-c)]
=0 \me(n,) Py 16(;41)

=P| 5 (i- o M) (14 ) ( > M) - 9))

W k(Riry)  PirB(140) nk (n) nr(n)

By (6.2.9) ond (6.2.10)

PRA( i 1=0))

. e s,
=P &, <Gty >+ 90610

From (6.2.9) we can determine «, 8 and p such that

1+e e . .
Groce T (7 +8)C(u)1—e) <1~

Then we have
PLA( =1 =)
PAAG e ) Gy 715)

P{& gy 1 <5)

Hence, by Lemma 6.2.1 we have a constant K so that

P&t 2 =R (1 =)

<K= {1-2,C,)}.

v

IV

By (6.2.7) putting v=1+v'(y/>0), we have

{""”*’< J n/c(n)_ 1 ‘ -
<K(y+38)Zizim {1-2(C

)} + Kno{l - q)lv(cno)}

LN
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S_K(l;i)zi:l(ni— 1 {1 =@H(C,)} + Kno{1—®,(C.)}

SE—Q:;—I-’L)En:no{]- —®(C)} + Kn){1—2x(C,,)}.

Hence (6. 2. 4) implies

S |
-1
Py 7)1
which is true that with probability 1 S,,/m(r;)—»l
2, Necessity. Let X, X, X, X, - be mutually independent

random variables all having the same distribution function F(x)

(6.2.1) and put X,=X,—X,(k=1,2, - )y and S,=X,+ X,+ ------ +X.
Then, by the assumption, we clearly have

P,{lim S, /nx(n)=0} =1.

where {x(n)} satisfies (6.2.6). Then, we easily see that there exists
for any €>0 and for infinitely many i’s,

1S5, — Sn | S em(n)

with probability 1, where {} is the subsequeuce defined by (6.2.7).
Hence, by Borel-Cantelli’'s thearem, we have X8, <«, where §=P,

{1 S, S,, | >enx(n)}. By Lemma 6.2.2

21 00 = Ezfcpy{l §;3£+1 - Sni | > enim(ni)}

i+1

>Azl-02nt+l 7{ I Xn l > 45”1’5(7; )}

ZAS o Py (X | > deni(n)}
= A 50 P A(X, > Benn(n) ~(X, < dens(n)}
= A3, 5P X, >8enr(n)} Py{ X, < denk(n)},

where A is an absolute constant. As we have

P{X, < denn(n)} = S dF(x)=1

| % | <denk(n) 2

for sufficiently large values of # (>#,), we obtain
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oo > zn-‘:‘:ﬂ;aﬂz%z,,_;;o,,,P,‘{X,,>sem(n)}.

Hence, by Lemma 6. 1.1, we have
2i2i{1—DPu(8enk(n))} < oo
Whence, for any small >0 we have
(6.2.11) 2i{l =@ x(nmr(n))} < oo.

Furthermore by the monoton increase of x(#) we see clearly unk(n)
=p(n+1xrn+1) (n=1, 2,------ ) for any #>0. Next show that

mni(n)

n
(6.2.12) — SO %dF (x)—roo.

Suppose that (6. 2. 12) is not true, then there exist two Subsequences
{m.| k=1, 2, b {0, L OJR=1, 2,000 } and a constant M such that

,7?%2;)" " xdr (=
g

0

Since we easily have n{1—F(n, (1))} =0(1), (k—>=<),

f(n,;/c(tnk)) -1 Z =7

SZ""S AP (x)+ L

1% | >0y K00 (1) Jo

#y

S;" { i) _ 1} dF (%)

gt KK

%dF (£)=0(1), (k> ).

As -
|n log f(t/nr(n))—n{ £ (#/nx(n))—1} | <| f(t/ns(n))— 1

for sufficiently large values of #, we clearly see Fr@t/ne(n)—1 (n—o),
which is contrary to the first assumption. Thus we can conclude
(6.2.3), (6.2.4) and (6.2.5) if we put nns(n)=C,.

§ 6. 3. An extension of P. Levy—J. Marcinkiewicz’s theorem.
Let {6.} be a sequence of positive numbers monotonically tending
to . Then it is called, according to P. Lévy, that {4,} belongs to
~an upper class 11 (a lower class 8) if we have with probability 1

1S,] > 6,

for at most finitely many n’s (inﬁhitely many n’s)
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~

Now given a sequence of independent random variables {X,|n=

1,2,-0000e } having respectively distribution functions F.(x) (n=12,------ )
such that
631 L sarm=al @ @=12., 222)
VA |22 ’ || >2Z

where A and Z, are consatnts independent of #. And furthermore
suppose that the expectation E(X,) of X, is zero when it exists.
Then we have

Theorem 6. 3. 1. Let {X,} be a sequence of the independent random
variables having the properties quoted above and let {6,} be a sequence of
positive numbers monotonically tending to « such that

(6.3.2) 2ai{l —(I)Fm(gn)} -0, (n—>c),

(6.3.3) el(am + Qy b SAIRRARE + anm)_) 0» (n")oo )

and there exist a constant 8(1>8>0) and subsequence {6, |k=0, 1,2,---...}
satisfying

(6.3.4) 0,00, <30, 0sf0s, , k=0, 1,2,000ns,
then if

(6.3.5) Szi{l—®, (8,)} < o,
{6,}en1, and if

(6.3.6) Szi{l—=®p (6.)} =co,

{6.,}e, where a,, (i=1, 2,------ , 1) are definded as follows :
0(=E(X)) if E(X) exists,
Q=
\ S xdF(x) otherwise.

1210,
For the proof of Theorem we need the following Lemma.
Lemma 6. 3. 1. Let {X,} be a system of random variables such,

that the expectation E(X,) of X, is zero when it exists, then a sufficient

condition for the existence of a sequence {0,>0|n=1,2,...... } satisfying
for any ¢>0
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(6.3.7) PAIZho X~ )| Z0,} >0, (n—>e0)
is

(6.3.8) Snet{l=®f (6.)}—0, (n—>o0),
where

0 for E(X,)=0
Q= n
{ SA xdF,(x), otherwise.

Proof. By (F.I.6), (6.3.5) implies
ey | Fun(E/02) €XD (—it@nn/6,) = 1| = (£+ 2|2 ] + ) i {1~ Pr (6.}
for every finite interval of t. And we have
{log Iy fu(t/6,) €XD (—it@n/0,) — ez { F(t/62) €XD (—1t@nn/0,)—1} |
=20l fu(#/6,) €Xp (—8t@nn/0,)— 1]

for every finite interval of ¢ and for sufﬁc1enly large values of n.
Hence we obtain

05, f.(8/6,) exp (—ita,,[6,)>1, (n—o)

for every ﬁnité interval of ¢ from which we can get the conclusion.
Proof of Theorem 6. 3.1. From Lemma 6. 3. 1, (6. 3. 2) implies that

2?—1 (XL"— ain)/en
converges to zero in probablility as #—«. Hence by (6. 3. 3)
> X6,

also converges to zero in probability as #—c. Next, for {6n} defined
by (6.3.4) and for any n(8/2>n>0), if k is sufﬁc1c1ently large, we
have

(639) - | P,{s,.,;ﬂ—s,,..z—ne,,m},z%
for any fixed m (m...>m). Now, by A. Kolmogoroff—G. Ottaviani’s
method, denote by E.(m=n+1, - , M) the following events:



(] Kiyonori Kounisawa

72 o ((Si=8,)=0,/2} A{(Sa=8.,)> 0,12

(m=nl.,+ 1’ """ ’ nk+l)!

then E,(m=n.+1,-.----, n,,,) are mutually exclusive and
P, U8~ 8,)>6./2) = St P{En}.
Hence we have

2P s $,)>6./2)

= :ak:;zlkﬂpy{Etzzf‘\(zzlzt+rr}+lx1»2 "’7911,“_1)}

< Py{ Sn“ n,b ( 77)9"k+1 }

Whence, putting 8/2—n=r, we get

{n :;I-l(s" =S )>6 /2}<2P {S"hﬂ ”k>70nk+1}'
In the same manner, we see.
P (Si=S,)< ~ e,./z}<2P (S =Sy =—10, ).
Hence
(6310) P15~ ,,k\>e/2)}<2p (S0, =S, 1276, }
On the other hand, let X, X X, X, ----- be a sequence of mutually
independent random varlables and let the dlstnbutlon of X,(k=1,
2, eerees ) be-the same as that of X,(k=1, 2,00eene ). Further put §,=X,

Foereens X'" ane S”, Xl+ ...... +X(n_1 2, eeeeen ). Then, by (6. 3. 6)
Py{gﬂ,“— 1)9,,“_ 1= %

and
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1

P,(S -

i — S0, <0, 1=

for sufficienly large values of k and for any >0. Hence we get

PY{IS‘”IV«I —glkl = (T+ 7])9",“_1}

=P{(Sy,,,— S, —(:S-"'k,+1 - g"‘k)z('r + 77)6““1)"\(8 S—"k)sn_gnk-l-l}
+ Py{(snk,f1 O, (Sn,“_1 Sn )< ('T"l' n)enkﬂ)f\(sl 1 Slk = "k+1 }
2<1/2)P7{ls"k+£_8"1c‘ = TH”I;H}

for sufficiently large values of k& Since (S',,ﬁ -S,)/6.,  converges

k+1
to zero in probability as k— > and also ($~',_,k+1—.S’,,k)/ﬁnkH so, the above
inequality implies, by (F.I.4) and (F.I1.1)

PY{IS"’;.-+1~S%‘ = TG“kH} SZP,,{[S’,%H—-S%\ =(r+ n)ﬂ"’ku}
(6.3,11) <2[{1+(r+ )} (A WL =Yo, smierng, (O, D)

<2R[{1+(+ )} (r+ 9yl {1 =T, (6., )}
= KJZ?LZZI:}I {1 - (I)t‘n(67zk+1)}

for sufficiently large values of %k where R ia an absolute constant
and K;=4R {14 (v+7)}/(r+7). Now, if we take a sufficiently large
number #, we may assume the simultaneous existence of (6.3.4),
(6.3.10) and (6.3.11) for #n, (k=0,1,------ ). Hence in the following
inequality:

41

Yln (’SH I <671)J Y{ k=0 neng +l(! S"‘ _0“)}

>p { L (1S,— S,

k=0 =0 +1(l

|260,-1S, D~ 3,(S,,1=6,/2)]

K

=P A KL1S.-S, =024 A0S, 1<0,/2)]

=0 n=ng+1 k=i

k=0 n=n;

>1- P{” "8, — S,,k|>on/2)}
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{5 10,)

we see, by (6.3.10) and (6. 3. 11),

PG B (S=8,1> 1o))< P Y (15,-S,, | >0.2))

k=0 n=n+1 Yln-nk-rl
SZZ":"PY{I S"kn - S”k I = Te”k-n}
SK 20503 et {1=Pr (0, V<K 305 {1—Pr,(0.)}-
x
And also by (6.3.4)

r{ 508, 1> 6,2)=Pf 50s, S, 1> 17D, o)

+ Py {|Sy| > 0,/2}

<SPS, ~Sul> B200, VP (.15 0u2).

Since in the same way as (6. 3. 10), we obtain
PJ{S. ,,—S.]|=(1—8)0,,, /2}
SK3{1—®.,60,)} k=0,1,m,

where K, is a constant, we have

= (151> Lo, <K= {1-@,,(6,)} + P,{IS 2

PY k\jJ lsnk|>'§ e 22""”0{ - Fn-( N)}+ ‘Y{| ﬂo|>0”o/ }-

Conséquently we see

PS.08.> 0.}
SK 350 {1= Pr(0)} + K20 Z0o{1- P (0,)} + Py{1Sic | > 00/ 2}
Thus by appealing to (6.3.5) we can conclude

tim P,{ 5 (1S./>6.)}=0

n=n

which shows the fact {4,}ell.
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Next we shall suppose (6.3.6). First we readily see, for any
0>0,

(6.3.12) De{l=®p (0h,)} =00,
And (6. 3.1) implies that for sufficiently large values of #

6.3.13) 1—®; (06,)< }9 S x’dF,,(x)+S dF.(x)

292
W0y J |z <wsy, %] >0y

<(A+ 1)S dF.(%),

[z ] >wly

where A is a constant. Whereas let X, X, X,, X+ be a sequence
of independent random variables and let X, and X, have the same
distribution F(x) (k=1,2,--=--). Then X,=X,—X, depends on the

symmetrized distribution F,(x) of F(x) (k=1,2,.---). Now taking .
into account that for sufficiently large values of »

P,{|X.|>w8,/2} <12,

which easily follows from (6. 3.2), we see

1 S dF (%)= zlp,{X,, > wh,} + _;_p,{xn< — w0}

2 | 2| >wly,

SP,,{(X,.> wa,,),()?,,s%me,.)} + P,{(X,, > -wen),\(}?,,z — %ma,,)}
sP,{X,, ~X.> %wﬂn} + P,{X,,-—)f,,< —%we,.}

= S dF.(x).

1z >4wd

Hence by Lemma 6.2.1 and (6. 3. 2) there exists for #=#,>0

2“-:044 dF n(x)szzn-;oﬂ.s dﬁ ,.(x)

|o]>wn [ 2] >wn/2

<zSeSih| dFzuza| df, 0, (9

|2 | >wn, +1/2 | 2| >wfn,+1/4
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=24>,7.P, “ST&

k+1

- §nk| > (Ugrik+1/4 }

= 242’6:’0[PY{(IS/1“;_ Snk_(s‘ﬂkﬂ_—sflk)l > “’911,5-«-1/4)/\('3»,“1 —'Snk| _<_(00,,k+,/8)}

+ Pv{(|sn“1"'snk_(s

llk+1

=8> ©6s i/ 4) A(1Ss, , = S| > @0s-/8)} ]

<2432 {P{IS,, =S > 00u, . 8} + PyIS,, , .= Sa| > 001, /8}]

= 48 S‘k:cpy{ IS"k+1_ S"“kl > wenk+l})

dmand

whereS,=S,—S,=X,+---- + X, — (X e +X)=X+- +X,.. Hen-
ce, by (6.3.12) and (6. 3. 13), we have

Py {IS,, ,, —Sa | > 06, 41/8} =
Whence from (6. 3.6) we obtain, putting éw/8=2,
(6.3.14) 32 Py{|S,,, = Snl>26,,, J =
Now put

m-1

Upn= P’/{ Co (lsn/.l < enh)f\qsnml z en'")}

U=P{&S,1>6.)]
and A
=P, {|S,—S.,_]> 26},

then we easily have U=#,+u,+------+u. Whereas we get

(1= Uy 1) =Py {(1S0,— Sn,_|>202) ~ 53,15, <0,,)}

k=0
-1
SP’/{(‘ Sn,-l > eni)/\ kf_\o ISM,J Se,,,k}

=u,=U— ‘I]E—I-

Hence we see 1-U<(1-U._,1-0)<I(1-v,). As Sv=c follows
from (6. 3.14), we obtain U,—1 as i—>oc, which completes the proof
of Theorem 6. 3. 1.
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Next we shall show that Theorem 6.3.1 is an extension of P.
Lévy—J. Marcinkiewicz’s theorem.

Let {X.|n=12, ... } be a sequence of independent random varia-
bles satisfying
(6.3.15) P X|>Z}<CZ PIX,|>Z}=cZ"

O<a<?2, Z>2,>0, n=1,2, .--..- ),

where C and ¢ are constants both independent of #. And besides,
suppose that the expectation E(X,) of X, is zero when it exists.
Then P. Lévy®»—]. Marcinkiewicz’s® theorem carl be stated as
follows.

Theorem 6. 3. 2. Let {X,|n=1,2,..-.. } be the sequence of inde-
pendent random variables defined above and let A\(t) be a nondecreasing
Sfunction defined on (0, «), tending to o« as t—o, in such a manner
as the oscilation of log  \(t) between t and 2t tends to zervo as t—oo.
Then if

(6.3.16) St(ka(k)) < oo,
{(n log A(log n))'"*}ell
and if

(6.3.17) S (BA(R)) T=ce,

{(nlog Mlog n))'/*}eL.

This theorem was first proved by P. Lévy for the case 0<a<l
and next by J. Marcinkiewicz for the case l<a<?2.

By (6. 3. 15) and partial integration®’, we get

S 2dF(x)= -2\ dF(x)+2 S vde dF.(x)

lz| =2 |z|>Z 0 |z ]| >v

<2 S vd S dF,(x)+ Z;<2C S v+ Z3

Zo Jo|>v Zo

=__22fa(22'“-z;;~“)+25.
On the other hand, since we may, from the first, take Z, so as 2C/
@ P. Lévy, loc. cit. (6).

G J. Marcinkiewicz, loc. cit. (15).
¢ H. Cramér, loc. cit. (47).
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(2—a)=Z5 we have

(6.3.16) Zl‘zs

Hence {X,} satisfies (6.3.1). Next from

xdF (%)< 22C Z-<_2C S dF.(%).

2=z —-a —(2"“1)‘: le|>z

<C(nl 1 -1
P,{|X; |>(nlog nr(log n))}l/a{ (n log na(log n))
=>c(n log nr(log n))!

it follows that

zS dF (x)=0(log A(log ).

1= | >{n log nAClog 73] /*
Whence, put _
0,=[nlog nx(log n)]'",

then it clearly satisfies (6.3.4) and we obtain, paying attention to
(6.3.17),

S {1=@5 (0.0} =0 Sk | Idj}(x)]:o(l), (n—>w)

which shows (6.3.2). Now taking into account that for 0<ae<I all .
expectations E(X,)(k=12, ----- ) do not exist, we can derive from the
definition of a, :

PRI +a,m=z;zls xdF (%)
{z|tp
for 0<a<1, and so by partial integration we see

| She e | < zkrls |2 |dF (%)

|| =

—S\n {-e,,s dF (%) + S-"”dx S

2] >0 1]

=S\ {S"‘dx dF(v)+ S:odxs dF (o)

Zo jv|>a, o>

dF0)

|v|>»

= O0(nf,'~*)+ O(n).
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Accordingly for O<a<l

o | S| O(/6,)+ O(nf6)

=0(1/log n\(log n))+ O(n“%/(log nn(log n))%) :

=0(1), (n—>c).

On the other hand, for 1<a<2, all expectations E(X\)(k=1, 2.~ )
exist. Hence the definition of &, implies

At Gt + B =0.

Thus (6.3.3) is also satisfied, Finally, from .
Sa{1-2,,0)}=0{ =5 S dF (%))
[z | =6p

=0{3Z=,(nlog na(log n))'}

= O{Zk:lzgt;%-ﬂ

oz
nlog na(log »)

O{zi‘:,ﬁk—)}.«

il

it follows that
s {1, (0.)}

and

P

T nn(n)

are always simultaneously convergent or divergent. Thus we see
that Theorem 6.3.1 is an extension of Theorem 5. 3. 2.
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