

Selection-bias-adjusted inference for the bivariate normal distribution under soft-threshold sampling

Joseph B. Lang¹

Received: 22 February 2024 / Revised: 28 August 2024 / Accepted: 9 January 2025 / Published online: 2 May 2025 © The Institute of Statistical Mathematics, Tokyo 2025

Abstract

The problem of estimating parameters and predicting outcomes of a bivariate Normal distribution is more challenging when, owing to data-dependent selection (or missingness or dropout), the available data are not a representative sample of bivariate realizations. This problem is addressed using an observation model that is induced by a combination of a multivariate Normal "science" model and a realistic "soft-threshold selection" model with unknown truncation point. This observation model, which is expressed using an intuitive selection subset notation, is a generalization of existing "hard-threshold" models. It affords simple-to-compute selection-bias-adjusted estimates of both the regression (conditional mean) parameters and the bivariate correlation. In addition, a simple bootstrap approach for computing both confidence and prediction intervals in the soft-threshold selection setting is described. Simulation results are promising. To motivate this research, two illustrative examples describe a setting where selection bias is an issue of concern.

Keywords Inverse Mill's ratio \cdot Missing data \cdot Selection bias \cdot Truncated normal distribution

The online version of this article contains supplementary material.

Joseph B. Lang joseph-lang@uiowa.edu

¹ Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA 52242, USA