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Abstract
For the survival of cancer and many other complex diseases, gene–environment 
(G-E) interactions have been established as having essential importance. G-E inter-
action analysis can be roughly classified as marginal and joint, depending on the 
number of G variables analyzed at a time. In this study, we focus on joint analy-
sis, which can better reflect disease biology and is statistically more challenging. 
Many approaches have been developed for joint G-E interaction analysis for sur-
vival outcomes and led to important findings. However, without rigorous statisti-
cal development, quite a few methods have a weak theoretical ground. To fill this 
knowledge gap, in this article, we consider joint G-E interaction analysis under the 
Cox model. Sparse group penalization is adopted for regularizing estimation and 
selecting important main effects and interactions. The “main effects, interactions” 
variable selection hierarchy, which has been strongly advocated in recent literature, 
is satisfied. Significantly advancing from some published studies, we rigorously 
establish the consistency properties under high dimensionality. An effective compu-
tational algorithm is developed, simulation demonstrates competitive performance 
of the proposed approach, and analysis of The Cancer Genome Atlas (TCGA) data 
on stomach adenocarcinoma (STAD) further demonstrates its practical utility.
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