

On the usage of randomized p-values in the Schweder–Spjøtvoll estimator

Anh-Tuan Hoang¹ · Thorsten Dickhaus¹

Received: 17 April 2020 / Revised: 21 January 2021 / Accepted: 26 March 2021 / Published online: 28 April 2021 © The Institute of Statistical Mathematics, Tokyo 2021

Abstract

We consider multiple test problems with composite null hypotheses and the estimation of the proportion π_0 of true null hypotheses. The Schweder–Spjøtvoll estimator $\hat{\pi}_0$ utilizes marginal *p*-values and relies on the assumption that *p*-values corresponding to true nulls are uniformly distributed on [0, 1]. In the case of composite null hypotheses, marginal *p*-values are usually computed under least favorable parameter configurations (LFCs). Thus, they are stochastically larger than uniform under non-LFCs in the null hypotheses. When using these LFC-based *p*-values, $\hat{\pi}_0$ tends to overestimate π_0 . We introduce a new way of randomizing *p*-values that depends on a tuning parameter $c \in [0, 1]$. For a certain value $c = c^*$, the resulting bias of $\hat{\pi}_0$ is minimized. This often also entails a smaller mean squared error of the estimator as compared to the usage of LFC-based *p*-values. We analyze these points theoretically, and we demonstrate them numerically in simulations.

Keywords Bias \cdot Composite null hypotheses \cdot Mean squared error \cdot Multiple testing \cdot Proportion of true null hypotheses

Thorsten Dickhaus dickhaus@uni-bremen.de

> Anh-Tuan Hoang anhtuan.hoang@uni-bremen.de

¹ Institute for Statistics, University of Bremen, D-28344 Bremen, Germany