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Abstract

The typical central limit theorems in high-frequency asymptotics for semimartin-
gales are results on stable convergence to a mixed normal limit with an unknown
conditional variance. Estimating this conditional variance usually is a hard task,
in particular when the underlying process contains jumps. For this reason, several
authors have recently discussed methods to automatically estimate the conditional
variance, i.e. they build a consistent estimator from the original statistics, but com-
puted at different time scales. Their methods work in several situations, but are
essentially restricted to the case of continuous paths always. The aim of this work
is to present a new method to consistently estimate the conditional variance which
works regardless of whether the underlying process is continuous or has jumps. We
will discuss the case of power variations in detail and give insight to the heuristics
behind the approach.
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