

Global jump filters and quasi-likelihood analysis for volatility

Haruhiko Inatsugu¹ · Nakahiro Yoshida¹

Received: 1 July 2018 / Revised: 21 June 2020 / Accepted: 21 June 2020 / Published online: 16 January 2021 © The Institute of Statistical Mathematics, Tokyo 2021

Abstract

We propose a new estimation scheme for estimation of the volatility parameters of a semimartingale with jumps based on a jump detection filter. Our filter uses all of the data to analyze the relative size of increments and to discriminate jumps more precisely. We construct quasi-maximum likelihood estimators and quasi-Bayesian estimators and show limit theorems for them including L^p -estimates of the error and asymptotic mixed normality based on the framework of the quasi-likelihood analysis. The global jump filters do not need a restrictive condition for the distribution of the small jumps. By numerical simulation, we show that our "global" method obtains better estimates of the volatility parameter than the previous "local" methods.

Keywords Volatility \cdot Jump \cdot Global filter \cdot High-frequency data \cdot Quasi-likelihood analysis \cdot Stochastic differential equation \cdot Order statistic \cdot Asymptotic mixed normality \cdot Polynomial-type large deviation \cdot Moment

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

This work was in part supported by CREST JPMJCR14D7 Japan Science and Technology Agency; Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research No. 17H01702 (Scientific Research); and a Cooperative Research Program of the Institute of Statistical Mathematics.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s1046 3-020-00768-x) contains supplementary material, which is available to authorized users.

Nakahiro Yoshida nakahiro@ms.u-tokyo.ac.jp