

Multiresolution analysis of point processes and statistical thresholding for Haar wavelet-based intensity estimation

Youssef Taleb¹ · Edward A. K. Cohen¹

Received: 20 March 2019 / Revised: 9 March 2020 / Published online: 8 May 2020 © The Institute of Statistical Mathematics, Tokyo 2020

Abstract

We take a wavelet-based approach to the analysis of point processes and the estimation of the first-order intensity under a continuous-time setting. A Haar wavelet multiresolution analysis is formulated which motivates the definition of homogeneity at different scales of resolution, termed *J*-th level homogeneity. Further to this, the activity in a point process' first-order behaviour at different scales of resolution is also defined and termed *L*-th level innovation. Likelihood ratio tests for both these properties are proposed with asymptotic distributions provided, even when only a single realization is observed. The test for *L*-th level innovation forms the basis for a collection of statistical strategies for thresholding coefficients in a wavelet-based estimator of the intensity function. These thresholding strategies outperform the existing local hard thresholding strategy on a range of simulation scenarios. This methodology is applied to NetFlow data, characterizing multiscale behaviour on computer networks.

Keywords Wavelets \cdot Multiresolution analysis \cdot Poisson process \cdot Likelihood ratio test \cdot Statistical thresholding

The authors gratefully acknowledge EPSRC.

Edward A. K. Cohen e.cohen@imperial.ac.uk

> Youssef Taleb youssef.taleb12@imperial.ac.uk

¹ Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s1046 3-020-00753-4) contains supplementary material, which is available to authorized users.