

Valid *p*-values and expectations of *p*-values revisited

Albert Vexler¹

Received: 3 July 2019 / Revised: 13 August 2019 / Published online: 3 March 2020 © The Institute of Statistical Mathematics, Tokyo 2020

Abstract

We focus on valid definitions of *p*-values. A valid *p*-value (VpV) statistic can be used to make a prefixed level- α decision. In this context, Kolmogorov–Smirnov goodnessof-fit tests and the normal two-sample problem are considered. We examine an issue regarding the goodness-of-fit testability based on a single observation. We exemplify constructions of new test procedures, advocating practical reasons to implement VpV mechanisms. The VpV framework induces an extension of the conventional expected *p*-value (EPV) tool for measuring the performance of a test. Associating the EPV concept with the receiver operating characteristic (ROC) curve methodology, a wellestablished biostatistical approach, we propose a Youden's index-based optimality to derive critical values of tests. In these terms, the significance level $\alpha = 0.05$ is suggested. We introduce partial EPV's to characterize properties of tests including their unbiasedness. We provide the intrinsic relationship between the Bayes Factor (BF) test statistic and the BF of test statistics.

Keywords AUC \cdot Bayes Factor \cdot Kolmogorov–Smirnov tests \cdot Likelihood ratio \cdot *p*-value \cdot ROC curve \cdot Pooled data \cdot Single observation \cdot Type I error rate \cdot Youden's index

Albert Vexler avexler@buffalo.edu

¹ Department of Biostatistics, The State University of New York at Buffalo, Buffalo, NY 14214, USA