

Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings

Yugo Nakayama¹ · Kazuyoshi Yata² · Makoto Aoshima²

Received: 28 September 2018 / Revised: 15 April 2019 / Published online: 15 July 2019 © The Institute of Statistical Mathematics, Tokyo 2019

Abstract

In this paper, we study asymptotic properties of nonlinear support vector machines (SVM) in high-dimension, low-sample-size settings. We propose a bias-corrected SVM (BC-SVM) which is robust against imbalanced data in a general framework. In particular, we investigate asymptotic properties of the BC-SVM having the Gaussian kernel and compare them with the ones having the linear kernel. We show that the performance of the BC-SVM is influenced by the scale parameter involved in the Gaussian kernel. We discuss a choice of the scale parameter yielding a high performance and examine the validity of the choice by numerical simulations and actual data analyses.

Keywords Geometric representation \cdot HDLSS \cdot Imbalanced data \cdot Radial basis function kernel

Makoto Aoshima aoshima@math.tsukuba.ac.jp

> Yugo Nakayama n-yougo@math.tsukuba.ac.jp

Kazuyoshi Yata yata@math.tsukuba.ac.jp

We are very grateful to the associate editor and the reviewer for their constructive comments. The research of the second author was partially supported by Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science (JSPS), under Contract Number 18K03409. The research of the third author was partially supported by Grants-in-Aid for Scientific Research (A) and Challenging Research (Exploratory), JSPS, under Contract Numbers 15H01678 and 17K19956.

¹ Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

² Institute of Mathematics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan