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Abstract
Multivariate analysis of variance (MANOVA) is a powerful and versatile method to
infer and quantify main and interaction effects in metric multivariate multi-factor data.
It is, however, neither robust against change in units nor meaningful for ordinal data.
Thus, we propose a novel nonparametric MANOVA. Contrary to existing rank-based
procedures, we infer hypotheses formulated in terms of meaningful Mann–Whitney-
type effects in lieu of distribution functions. The tests are based on a quadratic form in
multivariate rank effect estimators, and critical values are obtained by bootstrap tech-
niques. The newly developed procedures provide asymptotically exact and consistent
inference for general models such as the nonparametric Behrens–Fisher problem and
multivariate one-, two-, and higher-way crossed layouts. Computer simulations in
small samples confirm the reliability of the developed method for ordinal and met-
ric data with covariance heterogeneity. Finally, an analysis of a real data example
illustrates the applicability and correct interpretation of the results.
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1 Motivation and introduction

In many experiments, e.g., in the life sciences or in econometrics, observations are
obtained in elaborate factorial designs with multiple endpoints. Such data are usually
analyzed using MANOVA methods such as Wilk’s �. These procedures, however,
rely on the assumptions of multivariate normality and covariance homogeneity and
usually break down if these prerequisites are not fulfilled. In particular, if the obser-
vations are not even metric, such applications are no longer possible since means
no longer provide adequate effect measures. To this end, several rank-based meth-
ods have been proposed for nonparametric MANOVA and repeated measures designs
which are usually based on Mann–Whitney-type effects: in the context of a nonpara-
metric univariate two-sample problem with independent and continuous observations
Yik ∼ Fi , i = 1, 2, k = 1, . . . , ni , Mann and Whitney (1947) introduced the effect
w = P(Y11 ≤ Y21) = ∫

F1dF2 also known as ordinal effect sizemeasure (Acion et al.
2006). An estimator ofw is easily obtained by replacing the distribution functions with
their empirical counterparts. While this effect has several desirable properties and is
widely accepted in practice (Brumback et al. 2006; Kieser et al. 2013), generalizations
to more than one dimension or higher-way factorial designs are not straightforward.

Concerning the latter, there basically exist two possibilities in the literature to cope
with a ≥ 3 sample groups with independent univariate observations Yik ∼ Fi , i =
1, . . . , a, k = 1, . . . , ni : First, considering only the pairwise effects wi� = P(Yi1 ≤
Y�1), 1 ≤ i �= � ≤ a (as proposed by Rust and Filgner 1984) can lead to paradox
results in the sense of Efron’s Dice. That is, due to the possible situation w12 > 1

2
and w23 > 1

2 the third group appears to be stochastically greater than the first group
even though w31 > 1

2 is possible at the same time. See also Thas et al. (2012) and the
contributed discussions byM. P. Fay andW. Bergsma and colleagues for pros and cons
of the possibly induced intransitivity by certain probabilistic indexmodels.We refer to
Brown and Hettmansperger (2002), Thangavelu and Brunner (2007) or Brunner et al.
(2017) and the references cited therein for further considerations on this issue. Second,
in order to circumvent the problem of intransitive effects, the group-wise distribution
functions Fi may be compared to the same reference distribution. Usually, this is the
pooled distribution function H = 1

N

∑a
i=1 ni Fi (Kruskal 1952; Kruskal and Wallis

1952), resulting in so-called (e.g., Brunner et al. 2017) relative effects ri = ∫
HdFi .

Multivariate generalizations of this approach can be found in Puri and Sen (1971),
Munzel andBrunner (2000) or Brunner et al. (2002); see alsoDeNeve and Thas (2015)
for a related approach. Since these quantities depend on the sample sizes ni , however,
they are no fixed model constants and changing the sample sizes might dramatically
alter the results; see again Brunner et al. (2017) for an example in the univariate
case. For this reason, Brunner and Puri (2001) proposed a different nonparametric
effect pi = ∫

GdFi for univariate factorial designs, where G = 1
a

∑a
i=1 Fi denotes

the unweighted mean of all distribution functions. The same approach has also been
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