

Reliability analysis of a *k*-out-of-*n*:*F* system under a linear degradation model with calibrations

Ensiyeh Nezakati¹ \cdot Mostafa Razmkhah¹ \cdot Firoozeh Haghighi²

Received: 28 April 2017 / Revised: 7 December 2017 / Published online: 26 February 2018 © The Institute of Statistical Mathematics, Tokyo 2018

Abstract A k-out-of-n: F system with both of soft and hard failures is considered such that its components degrade through internal and external factors. A linear model is considered for degradation path of each component. Reliability function of the system is derived and the effect of varying the parameters are studied on reliability function for some systems. Moreover, the effect of calibration on reliability and maximum working time of such a system is investigated. The optimal number of calibrations is also determined for some special cases.

Keywords Calibration \cdot Soft failure \cdot Hard failure \cdot Internal degradation \cdot External degradation \cdot Reliability \cdot Sensitivity analysis \cdot Optimization

Mostafa Razmkhah razmkhah_m@um.ac.ir

¹ Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

² School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran