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Abstract Non-concave penalized maximum likelihood methods are widely used
because they are more efficient than the Lasso. They include a tuning parameter
which controls a penalty level, and several information criteria have been developed
for selecting it. While these criteria assure the model selection consistency, they have
a problem in that there are no appropriate rules for choosing one from the class of
information criteria satisfying such a preferred asymptotic property. In this paper, we
derive an information criterion based on the original definition of the AIC by con-
sidering minimization of the prediction error rather than model selection consistency.
Concretely speaking, we derive a function of the score statistic that is asymptotically
equivalent to the non-concave penalized maximum likelihood estimator and then pro-
vide an estimator of the Kullback–Leibler divergence between the true distribution
and the estimated distribution based on the function, whose bias converges in mean to
zero.
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1 Introduction

The Lasso (Tibshirani 1996) is a regularizationmethod that imposes an �1 penalty term
λ‖β‖1 on an estimating function with respect to an unknown parameter vector β =
(β1, β2, . . . , βp)

T, where λ (> 0) is a tuning parameter controlling a penalty level.
The Lasso can simultaneously perform estimation and variable selection by exploiting
the non-differentiability of the penalty term at the origin. Concretely speaking, if β̂λ =
(β̂λ,1, β̂λ,2, . . . , β̂λ,p)

T is the estimator based on the Lasso, several of its components
will shrink to exactly 0 when λ is not close to 0. However, a parameter estimation
based on the Lasso is not necessarily efficient, because the Lasso shrinks the estimator
to the zero vector too much. To avoid such a problem, it has been proposed to use a
penalty term that does not shrink the estimator with a large value. Typical examples of
such regularization methods are the Bridge (Frank and Friedman 1993), the smoothly
clipped absolute deviation (SCAD;Fan andLi 2001), and theminimax concave penalty
(MCP; Zhang 2010), whereas the Bridge uses an �q penalty term (0 < q < 1), SCAD
and MCP use penalty terms that can be approximated by an �1 penalty term in the
neighborhood of the origin, which we call an �1 type. Although it is difficult to obtain
estimates of them as their penalties are non-convex, there are several algorithms,
such as the coordinate descent method and the gradient descent method, that assure
convergence to a local optimal solution.

On the other hand, in the above regularization methods, we have to choose a proper
value for the tuning parameter λ, and this is an important task for appropriate model
selection. One of the simplest ways of selecting λ is to use cross-validation (CV; Stone
1974). While the stability selection method (Meinshausen and Bühlmann 2010) based
on subsampling in order to avoid problems caused by selecting a model based on only
one value of λ would be nice, it carries with it a considerable computational cost as
in CV. Recently, information criteria without such a problem have been developed
(Yuan and Lin 2007; Wang et al. 2007, 2009; Zhang et al. 2010; Fan and Tang 2013).
Here, by letting �(·) be the log-likelihood function and β̂λ be the estimator of β

obtained by the above regularization methods, their information criteria take the form
−2�(β̂λ) + κn‖β̂λ‖0. Accordingly, model selection consistency is at least assured
for some sequence κn that depends on at least the sample size n. For example, the
information criterion with κn = log n is proposed as the BIC. This approach includes
the results for the case in which the dimension of the parameter vector p goes to
infinity, and hence, it is considered to be significant. However, there is an arbitrariness
in the choice of tuning parameter by this approach. That is, there is a class of κn

assuring a preferred asymptotic property such as model selection consistency, but
there are no appropriate rules for choosing one from the class. For example, since the
BIC described above is not derived from the Bayes factor, there is no reason to use
κn = log n instead of κn = 2 log n. This is a severe problem because data analysts can
choose κn arbitrarily and do model selection as they want.
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