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Abstract In this paper, our aim is to revisit the nonparametric estimation of a square
integrable density f on R, by using projection estimators on a Hermite basis. These
estimators are studied from the point of view of their mean integrated squared error
on R. A model selection method is described and proved to perform an automatic bias
variance compromise. Then, we present another collection of estimators, of decon-
volution type, for which we define another model selection strategy. Although the
minimax asymptotic rates of these two types of estimators are mainly equivalent, the
complexity of the Hermite estimators is usually much lower than the complexity of
their deconvolution (or kernel) counterparts. These results are illustrated through a
small simulation study.

D.B. acknowledges the financial support from the Russian Academic Excellence Project “5-100” and
from the Deutsche Forschungsgemeinschaft (DFG) through the SFB 823 “Statistical modeling of
nonlinear dynamic processes”.

B Fabienne Comte
fabienne.comte@parisdescartes.fr

Denis Belomestny
denis.belomestny@uni-due.de

Valentine Genon-Catalot
valentine.genon-catalot@parisdescartes.fr

1 Faculty of Mathematics, Duisburg-Essen University, Thea-Leymann-Str. 9, 45127 Essen,
Germany

2 National Research University Higher School of Economics, Shabolovka, 26, 119049 Moscow,
Russia

3 MAP5UMRCNRS8145, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères,
75 270 Paris Cedex 06, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-017-0624-y&domain=pdf


30 D. Belomestny et al.

Keywords Complexity · Density estimation · Hermite basis · Model selection ·
Projection estimator

1 Introduction

Consider an i.i.d. n-sample X1, . . . , Xn from an unknown density f . The nonparamet-
ric estimation of f has been the subject of such a huge number of contributions in the
past decades that it is difficult to make an exhaustive list of references. Roughly speak-
ing, there are two main approaches to estimate f , kernel or projection method. In the
projection method which is our concern here, for f belonging to L

2(R), considering
an orthonormal basis in L

2(R), estimators are built by estimating a finite number of
coefficients of the development of f ∈ L

2(R) on the basis. Fourier and wavelet bases,
for instance, are commonly used. Bases of orthogonal polynomials are also used for
compactly supported densities (see e.g., Donoho et al. 1996; Birgé and Massart 2007;
Efromovich 1999; Massart 2007; Tsybakov 2009 for reference books). For densities
with a non-compact support included in R

+, recent contributions use bases composed
of Laguerre functions (see e.g., Comte and Genon-Catalot 2015; Belomestny et al.
2016; Mabon 2017).

To our knowledge, for densities on R, the use of a Hermite basis is only considered
in Schwartz (1967) andWalter (1977). In this paper,we are going to revisit the nonpara-
metric estimation of f ∈ L

2(R) by using projection estimators on a Hermite basis. To
find the minimax asymptotic rates of convergence, authors generally assume that the
unknown density belongs to a function space specifying some regularity properties of
f . Here, we consider the Sobolev-Hermite spaces which are naturally associated with
the Hermite basis and are defined in Bongioanni and Torrea (2006). It turns out that the
Sobolev-Hermite space of regularity index s is included in the classical Sobolev space
with same index. Therefore, we are led to compare the performances of the projection
estimators on the Hermite basis with those of the deconvolution estimators which are
projection estimators on the sine cardinal basis. Deconvolution estimators have been
widely studied mainly for observations with additive noise and also for direct obser-
vations (see e.g., Comte et al. 2008). The optimal L

2-risk for density estimation on a
Sobolev ball with regularity index s is of order O(n−2s/(2s+1)), see Schipper (1996),
Efromovich (2008) and Efromovich (2009). For densities having a fifth-order moment
belonging to a Sobolev Hermite ball with the same regularity index s, we obtain the
same rate. Therefore, from the asymptotic point of view, no difference can be made
between these two classes of estimators at least for non-heavy tailed densities. Apart
from Sobolev spaces, we consider a class of Gaussian mixtures where Hermite-based
estimators also achieve the minimax convergence rates. Finally, we study Hermite
projection estimators in a different context, the estimation of the Lévy density of a
Lévy process in the pure-jump case.

Whilemost papers focus on derivingminimax convergence rates, the computational
efficiency of the proposed estimator is not often considered. This issue is especially
important for densities with a non-compact support.We prove that the Hermite estima-
tors have usually amuch lower complexity than the deconvolution estimators, resulting
in a noteworthy computational gain.
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