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Abstract Social networks and other sparse data sets pose significant challenges for
statistical inference, since many standard statistical methods for testing model/data fit
are not applicable in such settings. Algebraic statistics offers a theoretically justified
approach to goodness-of-fit testing that relies on the theory of Markov bases. Most
current practices require the computation of the entire basis, which is infeasible in
many practical settings. We present a dynamic approach to explore the fiber of a
model, which bypasses this issue, and is based on the combinatorics of hypergraphs
arising from the toric algebra structure of log-linear models. We demonstrate the
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approach on the Holland–Leinhardt p1 model for random directed graphs that allows
for reciprocation effects.
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1 Introduction

Network data often arise as a single sparse observation of relationships among units,
for example, individuals in a network of friendships, or species in a food web. Such
a network can be naturally represented as a contingency table whose entries indicate
the presence and type of a relationship, and whose dimension depends on the com-
plexity of the model. This representation makes networks amenable to analysis by
standard categorical data analysis tools and, in particular, it brings to bear the log-
linear models literature, e.g., Bishop et al. (1975). However, given that often only a
small sample or even just a single observation of the network is all we have access
to, or that the data are sparse, several problems remain. In particular, in the case of
network models, since quantitative methods are essentially nonexistent, goodness-
of-fit testing is usually carried out qualitatively using model diagnostics. Namely,
the clustering coefficient, triangle count, or another network characteristic is used
for a heuristic comparison between observed and simulated data. In Hunter et al.
(2008), the authors offer a systematic approach for comparing structural statistics
between an observed network and networks simulated from the fitted model and point
out some of the difficulties of fitting the ERGMs. More recently, Goldenberg et al.
(2009) review various network models and discuss modeling and fitting challenges
that remain.

Even for linear exponential families, the problem of determining goodness of fit
is a difficult one for network data. When standard asymptotic methods, such as χ2

approximations, are deemed unreliable (see Haberman 1981), or when the observed
data are sparse, one may want to use exact conditional tests. In such tests, the observed
network (or table) u with sufficient statistic vector S(u) is compared to the reference
set, called the fiber FS , defined to be the space of all realizations of the network under
the given set of constraints S. Unfortunately, the size and combinatorial complexity
of the fiber are the main obstacle for complete fiber enumeration, so that even in
small problems (see Slavković et al. 2015, Sect. 4), determining the exact distribution
is often unfeasible. Moreover, fiber enumeration and sampling is crucial not only
for goodness-of-fit testing but also for data privacy considerations (see Slavković
2010).

The theory ofMarkov bases provides a possible solution to the problem of sampling
the fibers for any log-linear model. Namely, a Markov basis is a set of “moves” that,
starting from any point in a fiber, allows one to perform a random walk on the fiber
and visit every point with positive probability. Therefore, the standard Metropolis–
Hastings algorithm provides a way to carry out exact tests and as argued by Diaconis
and Sturmfels (1998), this procedure yields bona fide tests for goodness of fit. Further-
more, every log-linear model comes equipped with a non-unique but finite Markov
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