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Abstract In this paper, we study periodical stochastic processes, and we define the
conditions that are needed by a model to be a good noise model on the circumference.
The classes of processes that fit the required conditions are studied together with
their expansion in random Fourier series to provide results about their path regularity.
Finally, we discuss a simple and flexible parametric model with prescribed regularity
that is used in applications, and we prove the asymptotic properties of the maximum
likelihood estimates of model parameters.
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1 Introduction

1.1 Literature review

Modeling the random boundaries of star-shaped planar objects is a topic that is receiv-
ing an increasing interest in recent times. Some examples can be found in neurology
(see Hobolth 2003 and the references therein), geography (Burrough and Frank 1996),
stereology (see Hobolth et al. 2003; Hobolth and Vedel Jensen 2002 and the refer-
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