

An approximation to the information matrix of exponential family finite mixtures

Andrew M. Raim 1,2 · Nagaraj K. Neerchal 1 · Jorge G. Morel 1

Received: 10 April 2014 / Revised: 19 May 2015 / Published online: 1 October 2015 © The Institute of Statistical Mathematics, Tokyo 2015

Abstract A simple closed form of the Fisher information matrix (FIM) usually cannot be obtained under a finite mixture. Several authors have considered a block-diagonal FIM approximation for binomial and multinomial finite mixtures, used in scoring and in demonstrating relative efficiency of proposed estimators. Raim et al. (Stat Methodol 18:115–130, 2014a) noted that this approximation coincides with the complete data FIM of the observed data and latent mixing process jointly. It can, therefore, be formulated for a wide variety of missing data problems. Multinomial mixtures feature a number of trials, which, when taken to infinity, result in the FIM and approximation becoming arbitrarily close. This work considers a clustered sampling scheme which allows the convergence result to be extended significantly to the class of exponential family finite mixtures. A series of examples demonstrate the convergence result and suggest that it can be further generalized.

Keywords Fisher information · Complete data · Clustered sampling · Misclassification rate

Andrew M. Raim andrew.raim@gmail.com

¹ Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA

² Present Address: Center for Statistical Research and Methodology, U.S. Census Bureau, 4600 Silver Hill Road, Washington DC 20233, USA