Some binary start-up demonstration tests and associated inferential methods

N. Balakrishnan · M. V. Koutras · F. S. Milienos

Received: 14 December 2012 / Revised: 25 June 2013 / Published online: 30 August 2013 © The Institute of Statistical Mathematics, Tokyo 2013

Abstract During the past few decades, substantial research has been carried out on start-up demonstration tests. In this paper, we study the class of binary start-up demonstration tests under a general framework. Assuming that the outcomes of the start-up tests are described by a sequence of exchangeable random variables, we develop a general form for the exact waiting time distribution associated with the length of the test (i.e., number of start-ups required to decide on the acceptance or rejection of the equipment/unit under inspection). Approximations for the tail probabilities of this distribution are also proposed. Moreover, assuming that the probability of a successful start-up follows a beta distribution, we discuss several estimation methods for the parameters of the beta distribution, when several types of observed data have been collected from a series of start-up tests. Finally, the performance of these estimation methods and the accuracy of the suggested approximations for the tail probabilities are illustrated through numerical experimentation.

Keywords Beta binomial distribution \cdot EM algorithm \cdot Exchangeable random variables \cdot Maximum likelihood estimation \cdot Start-up demonstration test