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Abstract The estimate of the probability of the large deviation or the statistical
random field is the key to ensure the convergence of moments of the associated estima-
tor, and it also plays an essential role to prove mathematical validity of the asymptotic
expansion of the estimator. For non-linear stochastic processes, it involves technical
difficulties to show a standard exponential type estimate; besides, it is not necessary for
these purposes. In this paper, we propose a polynomial-type large deviation inequality
which is easily verified by the L p-boundedness of certain functionals; usually they are
simple additive functionals. We treat a statistical random field with multi-grades and
discuss M and Bayesian type estimators. As an application, we show the behavior of
those estimators, including convergence of moments, for the statistical random field
in the quasi-likelihood analysis of the stochastic differential equation that is possibly
multi-dimensional and non-linear. The results are new even for stochastic differential
equations, while they obviously apply to other various statistical models.
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1 Introduction

Analysis of the likelihood ratio is the first key step in order to investigate the perfor-
mance of statistics. After the initiation of the local asymptotic normality by Le Cam
and Hájek, a new paradigm of analysis was established by Ibragimov and Has’minskii
(1972a,b, 1981). That is, all asymptotic properties of statistics in likelihood analy-
sis could be reduced in the convergence of the random field formed by the likelihood
ratios. This program was successfully implemented mainly for i.i.d. settings and white
Gaussian noise models.

We shall recall Ibragimov–Has’minskii’s result briefly. Let Eε = {X ε,Aε, Pε
θ , θ ∈

�} be a sequence of statistical experiments with ε ∈ (0, 1]. � denotes a parameter
space in R

m . ϕ(ε) is a positive normalizing factor tending to zero as ε ↓ 0. For a
θ0 ∈ �, define a random field Zε by

Zε(u) = dPε
θ0+ϕ(ε)u

dPε
θ0

(X ε)

for u ∈ R
m . The following is a simplified version of their result.1

Theorem 0 (Ibragimov and Has’minskii 1972a,b, 1981) Suppose that Zε satisfies the
following conditions:

(i) There exist α > m and k ≥ α such that for some constant C,

Pε
[
|Zε(u2)

1/k − Zε(u1)
1/k |k

]
≤ C |u2 − u1|α (∀u1, u2, ε). (1)

(ii) For some γ > 0 and c > 0,

Pε
[

Zε(u) ≥ e−c|u|γ ] ≤ e−c|u|γ . (2)

(iii) Finite-dimensional convergence: Zε →d f Z , where Z is a Ĉ(Rm)-valued ran-
dom variable.2

Then (Pε)Zε → L{Z}. Moreover,

Pε

[
sup

u:|u|≥r
Zε(u) > e−c1rγ

]
≤ e−c1rγ

.

1 Pε denotes Pε
θ0

. By convention, Pε functions as the expectation for a random variable.
2 Ĉ(Rm ) is the space of continuous functions on R

m that tends to zero at the infinity.
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