On V-orthogonal projectors associated with a semi-norm

Yongge Tian · Yoshio Takane

Received: 2 June 2006 / Revised: 27 April 2007 / Published online: 21 September 2007 © The Institute of Statistical Mathematics, Tokyo 2007

Abstract For any $n \times p$ matrix \mathbf{X} and $n \times n$ nonnegative definite matrix \mathbf{V} , the matrix $\mathbf{X}(\mathbf{X}'\mathbf{V}\mathbf{X})^+\mathbf{X}'\mathbf{V}$ is called a \mathbf{V} -orthogonal projector with respect to the seminorm $\|\cdot\|_{\mathbf{V}}$, where $(\cdot)^+$ denotes the Moore-Penrose inverse of a matrix. Various new properties of the \mathbf{V} -orthogonal projector were derived under the condition that rank $(\mathbf{V}\mathbf{X}) = \text{rank}(\mathbf{X})$, including its rank, complement, equivalent expressions, conditions for additive decomposability, equivalence conditions between two $(\mathbf{V}$ -)orthogonal projectors, etc.

Keywords General linear model · Weighted least-squares estimator · V-orthogonal projector · Moore-Penrose inverses of matrices · Rank formulas for partitioned matrix