Nonparametric density estimation for linear processes with infinite variance

Toshio Honda

Received: 1 February 2006 / Revised: 9 February 2007 / Published online: 21 September 2007 © The Institute of Statistical Mathematics, Tokyo 2007

Abstract We consider nonparametric estimation of marginal density functions of linear processes by using kernel density estimators. We assume that the innovation processes are i.i.d. and have infinite-variance. We present the asymptotic distributions of the kernel density estimators with the order of bandwidths fixed as $h = cn^{-1/5}$, where *n* is the sample size. The asymptotic distributions depend on both the coefficients of linear processes and the tail behavior of the innovations. In some cases, the kernel estimators have the same asymptotic distributions as for i.i.d. observations. In other cases, the normalized kernel density estimators converge in distribution to stable distributions. A simulation study is also carried out to examine small sample properties.

Keywords Linear processes \cdot Kernel density estimator \cdot Domain of attraction \cdot Stable distribution \cdot Noncentral limit theorem \cdot Martingale central limit theorem