Accurate confidence intervals in regression analyses of non-normal data

Robert J. Boik

Received: 25 February 2005 / Revised: 26 June 2006 / Published online: 18 October 2006 © The Institute of Statistical Mathematics, Tokyo 2006

Abstract A linear model in which random errors are distributed independently and identically according to an arbitrary continuous distribution is assumed. Second- and third-order accurate confidence intervals for regression parameters are constructed from Charlier differential series expansions of approximately pivotal quantities around Student's *t* distribution. Simulation verifies that small sample performance of the intervals surpasses that of conventional asymptotic intervals and equals or surpasses that of bootstrap percentile-*t* and bootstrap percentile-|t| intervals under mild to marked departure from normality.

Keywords Bootstrap \cdot Charlier differential series \cdot Cornish-Fisher transformation \cdot Edgeworth expansion \cdot Kurtosis \cdot One-sample $t \cdot$ Skewness