T. Royen

Integral representations and approximations for multivariate gamma distributions

Received: 4 October 2004 / Revised: 3 October 2005 / Published online: 22 June 2006
© The Institute of Statistical Mathematics, Tokyo 2006

Abstract Let R be a $p \times p$-correlation matrix with an “m-factorial” inverse $R^{-1} = D - BB'$ with diagonal D minimizing the rank m of B. A new $(m + 1)/2$-variate integral representation is given for p-variate gamma distributions belonging to R, which is based on the above decomposition of R^{-1} without the restriction $D > 0$ required in former formulas. This extends the applicability of formulas with small m. For example, every p-variate gamma cdf can be computed by an at most $(p-1)/2$-variate integral if $p = 3$ or $p = 4$. Since computation is only feasible for small m, a given R is approximated by an m-factorial R_0. The cdf belonging to R is approximated by the cdf associated with R_0 and some additional correction terms with the deviations between R and R_0.

Keywords Multivariate gamma distribution · Multivariate chi-square distribution · Multivariate Rayleigh-distribution · Approximation for positive definite matrices · m-factorial matrices

1 Introduction and notations

For any $p \times p$-matrix $A = (a_{ij})$ the determinant is denoted by $|A|$ and the trace by $\text{tr}(A)$, $A > 0$ means positive definiteness, and $(a^{ij}) = A^{-1}$. I_p or I is a unit matrix and E denotes the expectation of a random variable (r.v.). A cumulative distribution function is abbreviated by cdf and a probability density by pdf. Formulas from the handbook of mathematical functions by Abramowitz and Stegun (1965) are cited by “A.S” and their number.