Teturo Kamae · Hayato Takahashi

Statistical problems related to irrational rotations

Received: 15 April 2004 / Revised: 5 July 2005 / Published online: 17 June 2006 © The Institute of Statistical Mathematics, Tokyo 2006

Abstract Let $\xi_i := \lfloor i\alpha + \beta \rfloor - \lfloor (i-1)\alpha + \beta \rfloor$ (i = 1, 2, ..., m) be random variables as functions of β in the probability space [0, 1) with the Lebesgue measure, where $\alpha \in [0, 1]$ is considered to be an unknown parameter which we want to estimate from the observation $\xi := \xi_1, \xi_2 ... \xi_m$. Let an observation ξ be given, which is a finite Sturmian sequence. We determine the likelihood function $P_{\alpha}(\xi)$ as a function of parameter α , and obtain the maximum likelihood estimator $\hat{\alpha}(\xi)$ as the relative frequency of 1s in a minimal cycle of ξ , where a factor η of ξ is called a minimal cycle if ξ is a factor of η^{∞} and η has the minimum length among them. We also obtain a minimum sufficient statistics. The sample mean $(\xi_1 + \xi_2 + \cdots + \xi_m)/m$ which is an unbiased estimator of α is not admissible if m = 6 or $m \ge 8$ since it is not based on the minimum sufficient statistics.

Keywords Sturmian sequence \cdot Irrational rotations \cdot Minimum sufficient statistics \cdot Admissible estimator \cdot UMVUE