Kunihiro Baba · Ritei Shibata

Multiplicative correlations

Received: 13 October 2004 / Revised: 27 July 2005 / Published online: 15 March 2006 ©The Institute of Statistical Mathematics, Tokyo 2006

Abstract A multivariate distribution is said to have multiplicative correlation if the correlation matrix $R = (r_{ij})$ is written as $r_{ij} = \delta_i \delta_j$ or $r_{ij} = -\delta_i \delta_j (i \neq j)$ for a parameter vector $\delta = (\delta_1, ..., \delta_n)$. We first determine feasible values for δ and show that variables with such a correlation matrix can always be decomposed into a common "signal" variable plus individual "noise" variables. It is also shown that a special case of this correlation matrix implies a sum constraint among variables and vice versa. Such properties illustrate why many multivariate distributions have such a correlation structure. Furthermore, several invariance properties lead to simple relations among several multivariate distributions.

Keywords Correlation modeling \cdot Factorization of variables \cdot Neural science \cdot Partial correlation \cdot Reduction method