Michael Falk · René Michel

Testing for tail independence in extreme value models

Received: 13 July 2004 / Revised: 14 February 2005 / Published online: 4 March 2006 © The Institute of Statistical Mathematics, Tokyo 2006

Abstract Let (X, Y) be a random vector which follows in its upper tail a bivariate extreme value distribution with reverse exponential margins. We show that the conditional distribution function (df) of X + Y, given that X + Y > c, converges to the df $F(t) = t^2$, $t \in [0, 1]$, as $c \uparrow 0$ if and only if X, Y are tail independent. Otherwise, the limit is F(t) = t. This is utilized to test for the tail independence of X, Y via various tests, including the one suggested by the Neyman–Pearson lemma. Simulations show that the Neyman–Pearson test performs best if the threshold c is close to 0, whereas otherwise it is the Kolmogorov–Smirnov test that performs best. The mathematical conditions are studied under which the Neyman–Pearson approach actually controls the type I error. Our considerations are extended to extreme value distributions in arbitrary dimensions as well as to distributions which are in a differentiable spectral neighborhood of an extreme value distribution.

Keywords Bivariate extremes \cdot Pickands dependence function \cdot Tail independence \cdot Tail dependence parameter \cdot Neyman–Pearson test \cdot Kolmogorov–Smirnov test \cdot Fisher's $\kappa \cdot$ Chi-square goodness-of-fit test \cdot Differentiable spectral neighborhood \cdot Generalized Pareto distribution