OPTIMAL VOLUME-CORRECTED LAPLACE-METROPOLIS METHOD

SU-YUN HUANG¹, CHUHSING KATE HSIAO² AND CHING-WEI CHANG³

¹Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan, R.O.C., e-mail: syhuang@stat.sinica.edu.tw

²Division of Biostatistics, Institute of Epidemiology, National Taiwan University, Taipei, 100, Taiwan, R.O.C., e-mail: ckhsiao@ha.mc.ntu.edu.tw

³Division of Biostatistics and Bioinformatics, National Health Research Institutes, Taipei, 115, Taiwan, R.O.C., e-mail: ashely@nhri.org.tw

(Received January 11, 2002; revised October 31, 2002)

Abstract. The article provides a refinement for the volume-corrected Laplace-Metropolis estimator of the marginal likelihood of DiCiccio *et al.* The correction volume of probability α in DiCiccio *et al.* is fixed and suggested to take the value $\alpha = 0.05$. In this article α is selected based on an asymptotic analysis to minimize the mean square relative error (MSRE). This optimal choice of α is shown to be invariant under linear transformations. The invariance property leads to easy implementation for multivariate problems. An implementation procedure is provided for practical use. A simulation study and a real data example are presented.

Key words and phrases: Bayes factor, Laplace approximation, marginal probability, Markov chain Monte Carlo.