HITTING STRAIGHT LINES BY COMPOUND POISSON PROCESS PATHS[†]

WOLFGANG J. BÜHLER^{1*}, PREM S. PURI^{2**} AND HANS-J. SCHUH¹

¹Fachbereich 17-Mathematik, Johannes Gutenberg-Universität Mainz, Postfach 3980, Saarstrasse 21, D-6500 Mainz, F. R. Germany ²Department of Statistics, Purdue University, West Lafayette, Indiana 47907, U.S.A.

(Received March 7, 1989; revised December 25, 1989)

Abstract. In a recent article Mallows and Nair (1989, Ann. Inst. Statist. Math., 41, 1-8) determined the probability of intersection $P\{X(t) = \alpha t \text{ for} some t \ge 0\}$ between a compound Poisson process $\{X(t), t \ge 0\}$ and a straight line through the origin. Using four different approaches (direct probabilistic, via differential equations and via Laplace transforms) we extend their results to obtain the probability of intersection between $\{X(t), t \ge 0\}$ and arbitrary lines. Also, we display a relationship with the theory of Galton-Watson processes. Additional results concern the intersections with two (or more) parallel lines.

Key words and phrases: Compound Poisson processes, intersection with lines, transition probabilities, Laplace transforms, Galton-Watson processes.