Ann. Inst. Statist. Math. Vol. 42, No. 2, 345-357 (1990)

EFFECT OF THE INITIAL ESTIMATOR ON THE ASYMPTOTIC BEHAVIOR OF ONE-STEP *M*-ESTIMATOR

JANA JUREČKOVÁ¹ AND PRANAB KUMAR SEN^{2*}

¹Department of Probability and Mathematical Statistics, Charles University, Sokolovská 83, 186 00 Prague 8, Czechoslovakia ²Department of Biostatistics 201 H, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, U.S.A.

(Received October 28, 1988; revised July 17, 1989)

Abstract. For a general (real) parameter, let M_n be the *M*-estimator and $M_n^{(1)}$ be its one-step version (based on a suitable initial estimator $M_n^{(0)}$). It is known that, under certain regularity conditions, $n(M_n^{(1)} - M_n) = O_p(1)$. The asymptotic distribution of $n(M_n^{(1)} - M_n)$ is studied; it is typically non-normal and it reveals the role of the initial estimator $M_n^{(0)}$.

Key words and phrases: Influence function, *M*-estimator, one-step version of *M*-estimator, random change of time, score function, weak convergence of *M*-processes.