METHODOLOGY FOR THE INVARIANT ESTIMATION OF A CONTINUOUS DISTRIBUTION FUNCTION

QIQING YU

Mathematics Department, Zhongshan University, the People's Republic of China

(Received April 21, 1987; revised November 11, 1988)

Abstract. Consider both the classical and some more general invariant decision problems of estimating a continuous distribution function, with the loss function

\[L(F, a) = \int (F(t) - a(t))^2 h(F(t)) dF(t) \]

and a sample of size \(n \) from \(F \). It is proved that any nonrandomized estimator can be approximated in Lebesgue measure by the more general invariant estimators. Some methods for investigating the finite sample problem are discussed. As an application, a proof that the best invariant estimator is minimax when the sample size is 1 is given.

Key words and phrases: Admissibility, admissibility within \(U_1 \), invariant estimator, minimaxity.

1. Introduction

Since Aggarwal (1955) found the best invariant estimator of an unknown continuous distribution function \(F(t) \), under the loss

\[L(F, a) = \int (F(t) - a(t))^2 h(F(t)) dF(t) , \]

different methods have been used in investigating the decision theoretic properties of the best invariant estimator \(d_0 \). One interesting fact is that when \(h(t) = t^{-1}(1 - t)^{-1} \), the best invariant estimator is the same as the empirical distribution function \(\hat{F}(t) \).

The asymptotical method has been used in approaching the problem. For instance, Dvoretzky et al. (1956) studied the asymptotical minimaxity property of the best invariant estimator for some loss function; and Read (1972) considered the asymptotical admissibility property of the best invariant estimator. However, this method does not describe the decision theoretic properties when the sample size \(n \) is finite.