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General backgrounds of the proposed various
subjects by Professor Yuko Hatano and
Professor Takuya Kawanishi on
environmental engineering

Our main working concept is

e Understanding environmental serious
issues

e Mathematical models and feasibility

e Numerical simulations

e Fitting with real or experimental data



Outline

e Topic 1: Improvement of a box model and
estimation of the initial explosion amounts (from
Prof. Hatano)

* Topic 2: Advection equation modeling of
radioactive material in the air (from Prof. Hatano)

* Topic 3: Satellite image analysis for effective
afforestation (from Prof. Kawanishi)



TOPIC 1: IMPROVEMENT OF THE BOX
MODEL AND ESTIMATION OF THE
INITIAL EXPLOSION AMOUNTS



Box Model

Regard air, soil, ...etc as boxes

Example(1) resuspension and deposition of radioactive material
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Box Model

Regard air, soil, ...etc as boxes

Example(2) Incoming radioactive materials from
Fukushima to Tsukuba

AR A outflow AIR B outflow AR C outflow AIR D

(Fukushima) me——) (Midpoint 1) m——— (MidpPOINt 2) m————)  (Tsukuba)

M, (2) g My (1) & Ms3(t) s My (t)




Box Model

Example(2) Incoming radioactive materials from
Fukushima to Tsukuba

AIR A outflow AR B outflow AIR C outflow AIR D
(Fukushima) e (Midpoint 1) m——) (MidpPOINt 2) m——)  (Tsukuba)
M, (1) ky My(1) ko Ms(1) ks Mi(1)

M (t) ki 0 0 0\ [M()
d (Ma(t) | | ke —ka 0 0| My(t)
dt | Ms(t) 0 ko —k3 O M3 (t)
My (t) 0 0 ks 0] \ Mt



Problem on box model

/It is difficult to fit the observed data )
(especially, polynomial decay in the long
time behaviour)

- Need Improvement of the model!

\ .~ How? Y,
( )

Can we estimate the explosion amount

from Fukushima by (improved) box model?)
\_

e

_ >

*These data are just for a demonstrative purpose.




Basic Strategy

f M{ (f}) = — KM, (t) + kgMg(f})
- Mb(t) = —ki My () — koMo (t)
(Coefficients are assumed to be constants

— Description power is limited.
\(Only exponential decay can be expected.) )

M (t) —k;1 0 0 2} M (t)
i Mz(t) B k1 /__bn N AL+
dt | Ms(t) | | O | We introduce the time
Ma(t) 0 | dependent coefficients.
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Air & soil model

M4(t): mass radioactive materials in air.

M,(t): mass radioactive materials in soil.

Governing equation

d

dt
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Coefficient settings

Assumptions
» k4(t): deposition effect decreases rapidly, e.g.,

ki(t) = e L.

» ko(t): resuspension effect decrease moderately, e.g.,

a
t+ 1

Ko(t) =

» K:small (1073 ~ 1072).
» T:large, e.g., 7> K.
» f41(t): newly introduced (artificial) source term.



Numerical simulation

We choose K = 1072, 1 = 103, a = 1 and

f1(t) = Aexp(—tP), B= 0.2
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Figure: Left: Plot of M4(t) and the data. Middle: Semilog plot. Right:
log-log plot.
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Improvement of 4 Boxes Model

(o)) — (o (o
U/ \\ I

» One way propagation

» Every city could be viewed as a point
» Every city has a known absorption coefficient

» Propagation needs time



Improvement of Four Boxes Model

d(i;t(t) = —a(OCHD) + FO — ky(DCy(D), 1> 0,,
d(ift(t) = —ax()Co(1) + kq(DC4(D) — ko(DCo(D), t > Ty, ,
dC;e,t(t) = —a3(t)Ca(t) + ko(1)Colt) — k3(t)Ca(t), t > To,,
dci;t(t) = —ay(t)Cy(t) + ka(t)Cs(t) — kaCy(t), t > Ts,

(1-b)
(1-c)

(1-d)

where a;(t) > 0 are known absorption coefficient. k;(t) > 0 are

the propagation ability from one city to the next one.

Assumption: We know the observation data Z(t) fort €[T3, T,1.
Inverse Problem: Determine { k;(t)} ?:1 such that C4(t) = Z(t).




Improvement of Four Boxes Model
Procedure:

» C4(T3) + Eq.(1-a):
Solving C¢(t) int €[0, T4] to get C4(T4)




Improvement of Four Boxes Model
Procedure:
» C4(T3) + Eq.(1-a):
Solving C4(t) int €[0, T4]to get C4(T)

» Cy(T4) = C4(T4) and Eq.(1-b):
Solving Co(t) int €[T4, To] to get Co(T»)




Improvement of Four Boxes Model
Procedure:

» C4(T3) + Eq.(1-a):
Solving C¢(t) int €[0, T4]to get C4(T4)

> Co(T4) = C4(T4) and Eq.(1-b):
Solving Cy(t) int €[T4, To] to get Co(Ty)

» C3(Ty) = Cu(T,) and Eq.(1-c):
Solving C3(t) int €[Ty, T3] to get Co(T3)

» Cy4(T3) = C5(T3) and Eq.(1-d):
Solving C4(t) int €[T3, Th] to get C4(t) fort €[T3, Tyl




Improvement of Four Boxes Model
Procedure:

» C4(T3) + Eq.(1-a):
Solving C¢(t) int €[0, T4]to get C4(T4)

» Co(Tq) = C4(T4) and Eq.(1-b):
Solving Cy(t) int €[T4, To] to get Co(Ty)

» C3(Ty) = Cu(T,) and Eq.(1-c):
Solving C3(t) int €[Ty, T3] to get Co(T3)

» C4(T3) = C3(T3) and Eq.(1-d):
Solving C4(t) int €[T3, Th] to get C4(t) fort €[T3, Tyl

Optimization:
Assume k;(t) have special form with unknown parameters, we
can solve the following problem to get k;(t)

Th
min/ ICat) — Z (D)2t
T

3



Numerical Simulations

Set ai(t) = exp(—K *t°), f;(1) = Aexp(—tY), ki(t) = i,
Ti = 2,

Figure: Left: Plot of C4(t) and the data. Middle: Semilog plot. Right:
log-log plot.



ML) + p(OM(t) = g(t), t> 0
M(0) =10

where p(t) = =+ kand q(t) = Cexp(—(t+ RBP). Here, the parameters ¢, Xk, C, B are all
undetermined.

The explicit solution is as follows

R
exp(ks (s+ BP)(s+ @TJdS
exp(kt)(t + R

Parameter Identification: Xk to, k= 1/XIC < X(tg) and ¢ < 1.
, rotic E I R

X(t) < C :—(+ k—Bz(t+ RPT exp(—t+ BP), < 1.

M(t) =

Numerical method: Bisection of ) [3= 0.2.
In this example, ¢ = 1, 3= 0.2, 14, C = 1500.

Study Group UTokyo One-box Model






Here we assume

One Box Model

du_

W _ _Ku
dt “




One Box Model

du o

t+ 71

(o, 7 > 0).



Multi-box model

Fukushima
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Multi-box model

We assume that
K(t)
(Az)?

where Ax is a distance between two boxes:

I —

distance between Fukushima and Tsukuba

Axr = N




Multi-box model

In the limit of N to infty, our box model is expressed by

reR, t>0,
reR, t=0.

\

'" @tu — K(t)@iu,

u = a(x),

Assuming that a,($) — (5($), we have

1
VAo

u(z,t) =

t
{log (1 + —
-

—1/2
)} exp

_ 2

dalog (1+ £)




Multi-box model

n— L {1 14 tﬂ e |
p— O — e .
u(z,1) Vira & T P 4alog (1 + %)




TOPIC 2: ADVECTION EQUATION
MODELING OF RADIOACTIVE MATERIAL IN
THE AIR






(x0, ¥0): Location of Fukushima Daiichi Nuclear Power Plant

t: Elapsed day after the accident

C(x,y,t): Concentration of Cs-137 in the air at z = 1.5 meter high
vi(t), va(t): Effective wind velocity

Initial Condition: C(x,y,0) = d(x — x0)d(y — o)

Boundary Condition: C(£oc, +00,t) =0

We treat the 2-D problem because

C(x,y,z,t) ~ C(x,y,t) X const. (Gavrilov)

Fiikiichima Accident Ian 26 201A 2 /1



Advection Equation of Cs-137:

8C(Xay7 t) aC(vaa t)

ot aX,' + /\env(t)C(X7Y7 t) + )‘decC(X,y, t) — 0. (]_)

+ V,'(t)

Adec = Arad + Ainf + Arunoff + ...

Arad: radioactive decay rate

Ainf o soil-infiltration rate

Arunoff . runoff rate

(all the removal processes with the first-order kinetics)

4 )
Can we generate the following decay by choosing
appropriate coefficients?

— At —7y
. Ae 't D

Fukushima Accident Jan 26, 2016 4 / 13




Discussions on model equations
describing specified decay rates



Backgrounds

In order to quantitatively interpret observed data of
cesium and predict, we need mathematical model
equations. Here we summarize them among linear
equations and test feasibility.

(I) Box model (Subject I)

(Il) Advection model (Subject 2)

(111) Diffusion equation

(IV) Fractional diffusion equation




(I) Box model

@(t) = A@)u(t), t>O0.
dt

Here u = (uq,---,u,)", A(¥): N x N symmetric
matrix.

Given y(t), ..., un(t) (e.9., ux(t) = cxt™7%),
determine A(#) such that u,(f) ~ ui(f) as t = oo,
k=1,2,...,N.



(I1): Advection equation
:C(x, 1) + v1(t)0:C + v, (HC + g(x, H)C = 0,
C(x,0) = 0(x) : Dirac delta

Here x = (x1, x,) € R?
Remark. g(x, t) = A, (x, 1) + Ay
Determine g(x, t) such that

f C(x, t)dx ~ Ae”™™t7 for large t > 0.
R2



(I11): Diffusion equation with time dependent
diffusivity

diu =pMAu, t >0, x € Q,
u=0 onodQ, ulx0 =alx), xe€Q.

(2: bounded domain.
Given u(t), determine p(t) such that u(x, ) ~ u(t)
ast — oo.



(IV) Fractional diffusion equation

e multiple orders

N
Z 49, = u = Au
k=1

e distributed orders

1
é —
f(; y(cf)atudcf = Au



(Il) Advection equation

By method of characteristics:

9;C(x, 1) + 11 (D91C + vo())C + glx, DC =0, x = (x1,xp) € RZ, ¢t > 0,
C(x, 0) = 6(x) : Dirac delta.

Then:

t
f]RZ C(x, )dx = exp (_fo q(fos v1(&)d¢, fOS v (§)dE, s) ds).

Example. Let vy () = 2t, pp = 1and q(x, 1) = =L +r3. Then

2

t
~ = q-
fp e, = oo™ 7 YA



(1ll) Diffusion equation

dtu = p(HAu, t > 0, x € Qbounded domain,
u=0 ondQ, ux0 =alx), xe€Q.

Then

00 t
|[24( )IILZ() Z‘(vl,qok)2 exp | —2Ax f p(&)dé
0

k=1
Here A@y = —Aj @, Aj. > 0, @j. = 00n 0Q, llpill = 1 and (@, pp) =0 if k #¢.
Aa
Example: Let p(t) = 1+ﬁt, a,f > 0. Then [lut, DIl 2 () < llall(1 + 1) p



(IV) Fractional diffusion equation

Fractional diffusion equation can simulate slow
diffusion? = YES

O(t™), single term,
Nlu(, Oz = O(t™1), multi-term,
O((log ™), distributed order.

a1 : minimum order of derivatives

Fractional diffusion equation can simulate slow
diffusion from the polynomial to logarithmic decay.



e Distributed order case. We assume
u(a) = u(0) + o(a®) with some 6 > 0as a — 0,
u € Cl[0,1], > 0, u(0) > 0. Then

(-, Dll20) = o(log ™) 2> u=0

(Li-Luchko-Yamamoto 2014): Log. decay is the
best possible

e Single case.
lu(-, Dllr2 = 0(t™*) = u = 0.



Summary

e (I): Input-out linear system

o (II) - (lll): Assuming some physical equations, we
make data fitting for coefficients.

e (IV): Fractional diffusion equation is based on
continuous time random walk.

Physical backgtounds: (I) < (Il), (lll) < (1V)



TOPIC 3: SATELLITE IMAGE ANALYSIS FOR
EFFECTIVE AFFORESTATION



Problem

How to analyze this picture to
determine the position of the
afforestation




Proposals

* Application of generalized polarization tensor
- Cluster the trees in several group

* Blurring using time-cone model

- Find a void area



QOur Problem

N

Let (2 be a one of the grid in the region of interest. Let T' = U Tk,
k=1
where T}, is well seperated small domain (Tree or Trees). We want to
M

approximate T by relatively large domains T' = U T. (M << N)ina
k=1
'good’ way.

Suggestion : Use the Generalized Polariztion Tensors



Properties of GPT

» The full set of GPTs determines I" uniquely.

» Finite number of GPTs can give the good approximation of I'. For
example, if we use GPT ms for |a| = |B| = 1 (Polarization
Tensor), then we can approximate T by a ellipse.



Generalized Polarization Tensors (GPT)

() : electric conductive medium.
1} : an inclusion with conductivity o.

N

T = J T, v=x(O\T) + (o = 1)x(T).
k=1

Consider the following transmission problem:

V- -AvVu=20 in R?,
u(z) — h(z) = O(|z]1=%)  as |z] — oo.



Then solution u can be represented by a single layer potentials

u(z) = h(z) + Y Sor[6™]().

where ¢(F) satisfies

OSar, [¢3)] Oh
K)o - 3 220 ‘ _
(AL =Kor,)1o™] oyl ovtk)  lar,  Ovk) lom, on Ik
Here we denote
N — o+1

2(c — 1)



For the multi-index o = (a1, ), 8 = (B1, B2) € Z2, let gb&k) be the
solution of

dSor, [65)
(AI ]CaTk)[¢(k)] Z 35’5([@ ]

s#k

oxr®

— oT;..
‘8Tk v k) loT, on Ik

Then the generalized polarization tensor defined m,z to be

Mag = Z/ 2 ¢4 (x)do ().



Some numerical results of the GPT




Some numerical results of the GPT
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Study Group 2016 for Environmental Sciences
Prof. Kawanishi’s Problem

Time—evolution method

Time cone model

Idea Stationary scatter diagram == Time-evolution system
describing density distribution (blurring/smoothing effect).
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One candidate Cahn’s time cone model (1995) for crystallization.

nucleation rate W(x, t)

== transformation rate u(x, t).
growth speed p(t)



Study Group 2016 for Environmental Sciences

Prof. Kawanishi’s Problem

Time—evolution method

Time cone model

Idea Stationary scatter diagram == Time-evolution system
describing density distribution (blurring/smoothing effect).

One candidate Cahn’s time cone model (1995) for crystallization.

nucleation rate W(x, t)

== transformation rate u(x, t).
growth speed p(t)

Time cone (domain of dependence):

Qp(x,t) := {(y,s); 0< s< t,

t
ly — x| < / (1) dT




Study Group 2016 for Environmental Sciences
Prof. Kawanishi’s Problem

Time—evolution method

1

Equivalent wave-type equation

Essence u(x,t) is determined by the integrated effect of W(x, t) in

the time cone Qp(x, t):

u(x, t) = / W(y,s)dyds (x €R3, t2> 0).
QRp(x,t)

'Y. Liu and M. Yamamoto, Appl. Anal., 93, 2014, 1297-1318.



Study Group 2016 for Environmental Sciences
Prof. Kawanishi's Problem

Time—evolution method

1

Equivalent wave-type equation

Essence u(x, t) is determined by the integrated effect of W(x, t) in
the time cone Qy(x, t):

ulx. t) = / Wiy s)dyds (x €R% t2 0).
Qp(x,t)

Lemma (Double wave equation)

Let p(t) =1. Then u satisfies
{(35— A)2u(x,t) = 8TW(x,t) (x €R®, t> 0),

&u(x,0) = 0 (x €R3, j=0,1,2,3).

'Y. Liu and M. Yamamoto, Appl. Anal., 93, 2014, 1297-1318.



Study Group 2016 for Environmental Sciences
Prof. Kawanishi’s Problem

Time—evolution method

1

Equivalent wave-type equation

Essence u(x,t) is determined by the integrated effect of W(x, t) in
the time cone Qp(x, t):

u(x, t) = / W(y,s)dyds (x €R3, t2> 0).
Rp(x,t)

Lemma (Double wave equation)

Let p(t) =1. Then u satisfies

(82 — A)%u(x, t) = 8mW(x,t) (x €RS3, t> 0),
&u(x,0) = 0 (x €R3, j=0,1,2, 3).

In our problem, we can choose
K

Wix,t) = xt(x), T = U{y €R’; |y — x| < €}.
k=1
'Y. Liu and M. Yamamoto, Appl. Anal., 93, 2014, 1297-1318.




Study Group 2016 for Environmental Sciences
Prof. Kawanishi’s Problem

Time—evolution method

Numerical ssimulation

Fact We have a fast solver for 3-dim. double wave equations.

Xp (x): Hexagonal shape with random noise. »

(2-D Forward Problem)
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Summary and Future works

Topic 1: Improvement of a box model and
estimation of the initial explosion amounts

* We improve the box model introducing time-
dependent coefficients.

 We do the data fitting.

* (Future work) Estimation of the initial
explosion amounts

— Inverse problem

— Data assimilation



Summary and Future works

Topic 2:Advection equation modeling of
radioactive material in the air

* We summarize and compare several PDEs

which describe a polynomial decay
phenomena.

* (Future works) More mathematical Analysis
and simulation



Summaries and Future works

Topic 3: Satellite image analysis for effective
afforestation

* We propose two approaches
— Generalized polarization tensors
— Time cone model

e (Future works) Simulation



