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A. Topological Tools for Sensor Network

Distributed homology computation via Mayer-Vietoris
sequences and the graph Laplacian

B. Graph Theoretical Tools for Dynamical Systems

Discrete Hodge decomposition (HodgeRank) for the
study of gradient structure of dynamical systems



Sensor Networks




Ubiquitous Sensors

Sensor network consists of spatially distributed
sensors to monitor physical or environmental
conditions.

Sensors foday: Single, powerful sensor

Future: many, cheap sensors working cooperatively



Coverage Problem
‘ () %\




Conventional Approaches

Computational Geometry

Need to know the absolute position of sensors.
We can use GPS, etc, fo know the position,
but this is battery consuming.

Probability theoretical approach
Compute the probability of coverage failures.

Need to assume that sensors are distributed
uniformly, which is too strong in practice.



Algebro-Topological Approach

R &

Network Data Polyhedron (Cech Complex)

"Nerve Theorem” tells us that © and
are topologically the same. '

We can easily count the number of holes of the latter
with the help of linear algebra, aka "Homology theory”.



Rapid Course in Homology (1/2)

vertices:
edges:
faces:
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V1,02, ..., Uk
€1,€2,...,6p
f17f27°'°7fm
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Boundary map (given arbitrary orientations to edges and faces)

9, : Co(K) — Cp_1(K)
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Rapid Course in Homology (2/2)

V€l’"|‘iC€S: U1,0V2,...,0UL
edges: €1,€2,...,€¢
faces: fi, fo, oy fm

We can show that “the boundary of a boundary is empty”,
that is, an o an_l_l — 0.

Therefore, we have im 0,11 C ker 9,, and define the n-th
homology group by

H,(K) :=ker0,/im0,1.

To compute homology groups, we need the Smith normal forms
of the boundary maps.



Betti Numbers

The betti number is the rank of the homology group.
That is, Bi(X) = rank H;(X)

Informally, the betti number B;(X) of a space X counts the
number of independent i-dimensional objects in X.
For example,

@ Bo(X) is the number of connected components

@ B1(X) is the number of two-dimensional or "circular” holes

@ B2(X) is the number of three-dimensional holes or "voids”
In the case of the torus T,

Bo(T)=1, Bi(T)=2, Bz




Rips Complex

Unfortunately, its computationally very hard to build
the Cech complex.

Therefore we introduce the Rips complex R :

e O-simplexes: sensor nodes T1,X2,...,TN
° |Tig, iy, ..., T4y, | is a kK-simplex < Every pair of Nodes in
{z;,,xi,,...,%; } are connected

[ -l

Note that R is determined by the underlying graph.




Problem Setting

We need this since

Al

A4

[ D CRR? is compact and connected. . .
the Rips complex is

The boundary gD is connected. not a nerve

X :={x;€D|i=1,---,N} sensors

X; * sensors on the boundary 8D, we call thi& “fence nodes”

Tv - a sensor can communicate with another r

within the distance T’
: . T . T
\_ Tc: the radius of monitoring regioniWe assume 7. > ﬁ

(A: the union of all monitoring region.

Problem: D c U?

fence nodes/



Sufficient Conditions

F : the Rips complex of the “fence” nodes.

Theorem [Robert Ghrist]

If there exists |o] € H3(R,F) such that
53[0] # 0 € Hi(F) then D C U.

We can simplify this condition as follows:

Theorem [ZA-Hayashi-Hiraoka]
If Hy(R)=0 then DCU.

e —— —_—




Distributed

omology Computation




Practical Problems

Who compute the homology?

We do not want to set a central node in the network,
for security reasons and robustness.

Homology computation is slow:

Homology computation is O(n?), therefore requires
a lot of CPU power when the network is large.

We want to distribute the homology computation!
Idea 1: Mayer-Vietoris sequence (ZA-Hayashi-Hiraoka)
Idea 2: Discrete Laplacian and the gossip algorithm



Computational Cost
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Mayer-Vietoris Sequence

The Mayer-Vietoris long exact sequence:
5 Hk(Rl M Rz) — Hk(Rl) D Hk(Rz) o Hk(Rl J Rz) o Hk_l(Rl M 'Rz) —>

Local information = Global Information

e 1. Decompose R
K

R=|JR
=1

e 2. Compute
H.(R;),Hi(R; NR;)

in parallel.

e Use Mayer-Vietoris to
compute H,.(R)



Experiment

Decompose D into vertical rectangles




Experimental Result
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Discrete Laplacian and




Graph Laplacian

For a graph (5, the matrix

L =D — Ais called its Laplacian
where

D : degree matrix 2 -1 0 0 -1 0
. 1 3 -1 0 -1 0
(diagonal) 0 -1 2 -1 0 0

A : adjacency matrix 0 0 -1 3 -1 —1
. 1 -1 0 -1 3 0
(OFF—dIClgOI'ICll) 0o 0 0 —-1 0 1

Using the directed Incidence matrix B,
we can write L = BB*



Laplacian for Simplicial Complexes

Recall that the incidence matrix of a graph is just

the boundary operator of the graph considered as
a simplicial complex.

For a simplicial complex X, define its k-th
Laplacian by

Lk — 8;; O 8k ak_|_1 O 6’Z+1

( Lo is the usual graph Laplacian)
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A Little bit of Harmonic Analysis

KI‘ heorem. \

Cr(X) =1m Orr1 @ ker Ly & im 0},

\ Therefore, Hy(X) = ker L /

A discrete analogue of the Hodge decomposition.



An Example

/'

ker I, = ((8,8,1,1,3,8,2,5

S 1 This recovers H1(X,R) =R

Note that at each vertex,
we have inflow = outflow.

8 3 Weights on edges represents
the corresponding generator.



Application to Coverage Problem

(1f ker Ly = {0} then DCU )

That is, if the kernel of L1 is trivial,
there is no hole in the coverage.

How can we check ker L1 = {0} ?



Heat Equation

. N dx
Consider the heat”™ ODE p — — [z

O-solution is
Cglobally stable ' ' ker Ly = {O})

(Note that L, is positive semi-definite)

Therefore, if the solutions of this ODE with
several distinct initial conditions always
converges to O, then we can conclude D C .



Hi(R,R) = R?

There should be two
independent solutions
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Graph Theoretical Tools
- for Dynamical Systems




Dynamical Systems

Typically, the phase space is a manifold M.
The time evolution law would be given by:

a differential equation on M (continuous time);
a map f:M— M (discrete time) .



Conley's Fundamental Theorem

Theorem (Conley). Any dynamical system can be l
decomposed into “chain recurrent sets” and

“connecting orbits” between them. All the chaotic
orbits are contained in chain recurrent sets ’

/\gdynamlcs ? Wanted: |
non chaotic, :
@ gradient-like a COITIPU‘l'a‘l'lonal
\ @ approach to this
op o |
A component with no <\J

decomposition
outgoing edge is an W —— "“'——J

attractor -




From Dynamics to Di-Graph

Given a dynamical systems f : X — X we
construct a directed graph G(f) which imitates
the dynamics of f

-----------------------------------------------
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Automated Analysis for DS

Periodic orbits:

Theorem. The set of periodic points of f is contained in
the cubes corresponding to eycles of G(f).

Note that this theorem holds regardless of the stability

of the periodic orbits.

The maximal invariant set and the chain recurrent set:

InvG(f) :={v eG(f)
SccG(f) :={veG()

dbi-infinitely long path through v}
dcycle through v}

Theorem. The maximal invariant set of f is contained
in | InvG(f) |. The chain recurrent setof f is

containedin | Scc G(f) |.



Collapsing G(f)

Definition. A Conley-Morse graph of a dynamical system
f is the directed graph obtained from G(f) by
collapsing each strongly connected component into a
single vertex and defining the edges by the fran&hvufy \
among each strongly connected components.

?




Example:
"Nonlinear Leslie Model




Linear Leslie Population Model

X1 O1X1 4+ 02X + -+ OeXi) |

X2 P1X1
FoRSRECPX3 o P2X2 |
Xk Pk—-1Xk-1 i
1——'—_—————-—-—J

Consider a population divided into k generations:
X : the number of individuals in the i-th generation

Pi : the probability that an individual in the i-th
generation survives for one generation

O, : the fertility of the i-th generation



Nonlinear Leslie Model

X1\  [((01X1 4 02X2 + -+ + OkXg) - @ AXLFX2 XK |
o P1X1

X3 gy P2X?2 |

\ Xk / \ Pk—1Xk-1 |

‘h

1——'—1—-———-—-—J

Consider a population divided into k generations:
X : the number of individuals in the i-th generation

Pi : the probability that an individual in the i-th
generation survives for one generation

O, : the fertility of the i-th generation



Multiple Coexisting Attractors

Ugarcovich-Weiss, Nonlinearity 17 (2004)



Qualitative Questions

Q. When is a dynamical system has multiple

attractors? W
e - j————-—-————-—J

Q. When is a dynamical system chaotic? %

Conventional Method: bifurcation analysis

o0 many parameters
too many ways to chaos

Want. We want to construct automatic and !
rigorous methods which can answer these %

“qualitative questions”. 1




Conley-Mose Graph

p3 : origin p2:2 — {1}

N/ \

pl:1 — {-0.5-0.8661, -0.5+0.8661, 1}

p0:0 — {-0.5-0.8661,-0.5+0.8661, 1} ) ‘ >

7. The Conley-Morse graph CMG(7) and the sets M(p) at the box (31,22).




Conley Morse Graph

0: 1
H=(0,Z,0)
Map 1:
#1=1
Eigenvalues 1:
(1).

)
discretized

,,4 algebraic
Represent the phase space 419 |
information

chaotic
invariant
set

(-0.5-0.866i, -0.5+0.866i, 1).

structure using directed graph /

2: 10339
H=(Z"3,Z,0)

called Conley-Morse Graph tor ErE

-~
#2=3 MaplO:
#1=1
#3=1 ey
Map] -0 lgen:l)ues H
Eigenvalues 0: :

(-0.5-0.866i, -0.5+0.866i, 1).
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-0

H-—-0-—0

Classify the parameter values
according to the discretized
dynamical information to obtain
"bifurcation diagram”
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"A database schemat for the analysis of global O RRAAE ax

dynamics of multiparameter systems”

SIAM J. Appl. Dyn. Sys. 8 (2009)
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Continuation Graph (2D)

Adjacency data of the decomposition of the ’
parameter space can be expressed by continuation ‘
graphs.

Class 17 Class 10 -'/ Class 7 \I B
b bores ) | posbonest L
“ bOX] \ \ /S/ Class 0

4 Class 1
\_ [890 boxes] /‘

Class 16
[1 box]

Class 13
[1 box]

Class 15
[1 box]

Class 2
[759 boxes)

N

Class 5
[88 boxes]|

Class 14
[1 box]

Edges of the continuation graph correspond to

"bifurcation curves” in the parameter space. ‘
e e————— ———— — 1——’—1-—_——-—J




Continuation Graph (3D)
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Example: Engine cooling jacket 1

By Courtesy of Andrzej Szymczak



Example: Engine cooling jacket 2

By Courtesy of Andrzej Szymczak



Pseudo Lyapunov Function




Failure of CM Decomposition

CM decomposition might be frivial when
* the resolution is not fine enough...
* the noise is too large...
* there is no gradient structure

A good decomposition

low resolution unbounded noise



Pseudo Lyapunov Function

We want to construct a combinatorial analog of
Lyapunov function, which is a maps:V - R
such that for each edge e =(i,j) € E , the value
of the map is very likely to increase along e.

Precisely, we want to find s that minimizes
>, ((grad s)(i, ) — Ay)?.
(ij)eE
where A= (A;) is the adjacent matrix and
grad s:VxV =R is defined by

(grad s)(i,j) :=s(j)—s(1).



Combinatorial Hodge Decomposition

Using the combinatorial Hodge decomposition
(Jiang-Lim-Yao 2011), we can show that the

normal equation for this minimizing problem is
Nos =—divV A

where Agis the graph Laplacian and

(divA) (D)= >, Ajy.

J:(,j)EE

Thus our minimizer can be written as
S = —Agdiv A
where t indicates Moore-Penrose pseudoinverse.



original low resolution unbounded noise




