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Sensor Networks



Ubiquitous SensorsSensors & Sense-ability

radar-on-a-
chip, caltech

multi-pathogen 
sensor, msu

aortal implant, remon 
medtech, israel

nanopore dna 
sensor, uiuc

salmonella dna sensor, 
csic, cataluna

You are already surrounded by sensors...

...most of which are macro-scale, stand-alone devices

Increasingly, you will find sensors shrinking and networking into a sensorium

Challenges for doing so include mathematical as well as technical hurdles:
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multi-pathogen 
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aortal implant, remon 
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csic, cataluna

You are already surrounded by sensors...

...most of which are macro-scale, stand-alone devices

Increasingly, you will find sensors shrinking and networking into a sensorium

Challenges for doing so include mathematical as well as technical hurdles:

Sensor network consists of spatially distributed 
sensors to monitor physical or environmental 
conditions.

Sensors today: Single, powerful sensor

Future: many, cheap sensors working cooperatively



Coverage Problem

We want to guarantee the non-existence of “holes” in 
the coverage region.



Conventional Approaches

Need to know the absolute position of sensors.

We can use GPS, etc, to know the position, 

but this is battery consuming.


Computational Geometry

Probability theoretical approach

Need to assume that sensors are distributed 
uniformly, which is too strong in practice.

Compute the probability of coverage failures.



Algebro-Topological Approach

“Nerve Theorem” tells us that            and  
are topologically the same.

We can easily count the number of holes of the latter 
with the help of linear algebra, aka “Homology theory”.

Network Data Polyhedron (Čech Complex)



Rapid Course in Homology (1/2)
vertices:

edges:
faces:

v1, v2, . . . , vk
e1, e2, . . . , e`
f1, f2, . . . , fm

K

Chain Groups C0(K) := {�1v1 + · · ·+ �kvk | �i 2 Z} ⇠= Zk

C1(K) := {�1e1 + · · ·+ �`e` | �i 2 Z} ⇠= Z`

C2(K) := {�1e1 + · · ·+ �mem | �i 2 Z} ⇠= Zm

Boundary map (given arbitrary orientations to edges and faces)

@n : Cn(K) ! Cn�1(K)

a b
The boundary of                   is        , of         is b� a

a b

c

~ab+ ~bc+ ~ca~ab =



Rapid Course in Homology (2/2)

We can show that “the boundary of a boundary is empty”, 

that is, @n � @n+1 = 0.

Therefore, we have                        and define the n-th

homology group by

im @n+1 ⇢ ker @n

Hn(K) := ker @n/im @n+1.

To compute homology groups, we need the Smith normal forms 
of the boundary maps.


vertices:
edges:
faces:

v1, v2, . . . , vk
e1, e2, . . . , e`
f1, f2, . . . , fm

K



Betti Numbers
何はともあれ，使ってみる

オイラー数
ホモトピー

なぜホモロジーか？

一般のオイラー数

Informally, the betti number β(X) of a space X counts the
number of independent -dimensional objects in X.
For example,

β0(X) is the number of connected components
β1(X) is the number of two-dimensional or ”circular” holes
β2(X) is the number of three-dimensional holes or ”voids”

In the case of the torus T,

β0(T) = 1, β1(T) = 2, β1(T) = 1.
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一般のオイラー数

Informally, the betti number β(X) of a space X counts the
number of independent -dimensional objects in X.
For example,

β0(X) is the number of connected components
β1(X) is the number of two-dimensional or ”circular” holes
β2(X) is the number of three-dimensional holes or ”voids”

In the case of the torus T,

β0(T) = 1, β1(T) = 2, β1(T) = 1.

The betti number is the rank of the homology group.
That is, β(X) = rnk H(X)
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Rips Complex

0-simplexes: sensor nodes

                    is a k-simplex

�������

Unfortunately, it’s computationally very hard to build 
the Cech complex.

Therefore we introduce the Rips complex    :

x1, x2, . . . , xN

|xi0 , xi1 , . . . , xik | ,
{xi0 , xi1 , . . . , xik}

Every pair of Nodes in

              are connected

Note that     is determined by the underlying graph.R



Problem Setting

: the union of all monitoring region.

Problem:

The boundary　　 is connected.
is compact and connected.

sensors

： the radius of monitoring region. We assume that　　

： sensors on the boundary      , we call them “fence nodes”

： a sensor can communicate with another sensor


   within the distance

fence nodes

A1

  |

A4

D ⇢ U?

U

We need this since 
the Rips complex is 

not a nerve



Sufficient Conditions

We can simplify this condition as follows:

If there exists                    such that 


                      then         .

Theorem [Robert Ghrist]

D ⇢ U

[�] 2 H2(R,F)

�2[�] 6= 0 2 H1(F)

Theorem [ZA-Hayashi-Hiraoka]
If                   then          .D ⇢ UH1(R) = 0

： the Rips complex of the “fence” nodes.



Distributed 


Homology Computation



Practical Problems

Who compute the homology?
We do not want to set a central node in the network, 
for security reasons and robustness.

We want to distribute the homology computation!
Idea 1: Mayer-Vietoris sequence (ZA-Hayashi-Hiraoka)
Idea 2: Discrete Laplacian and the gossip algorithm

Homology computation is slow:
Homology computation is        , therefore requires

a lot of CPU power when the network is large.


O(n3)



Computational Cost



Mayer-Vietoris Sequence
The Mayer-Vietoris long exact sequence:

1. Decompose

2. Compute 

in parallel.

Use Mayer-Vietoris to

compute

Local information ⇒ Global Information



Experiment

Decompose D into vertical rectangles

0 200
0

100



Experimental Result

computational time　　　　81.0　　　　49.2　　　 　1.0
# of partition elements　　　　1　　　　    2　　　 　　5

#{2-simplex}=519，　#{1-simplexes}=184，　#{0-simplexes}=30



Discrete Laplacian and 

Homology Computation



Graph Laplacian

G

L = D �A

D

A

For a graph    , the matrix

                is called its Laplacian

where

: degree matrix

  (diagonal)
: adjacency matrix 

  (off-diagonal)

Using the directed Incidence matrix    ,B
we can write                 L = BBT



Laplacian for Simplicial Complexes

For a simplicial complex    , define its k-th

Laplacian by

Lk : Ck(X)! Ck(X)
Lk := @⇤k � @k + @k+1 � @⇤k+1

(      is the usual graph Laplacian)

X

L0

Recall that the incidence matrix of a graph is just 
the boundary operator of the graph considered as 
a simplicial complex.



An Example

e1

e2 e3

e4

e5e6

e7e8

L1 =

0

BBBBBBBBBB@

2 �1 0 0 0 �1 0 0
�1 2 �1 0 0 0 �1 �1
0 �1 3 0 0 0 0 1
0 0 0 3 �1 0 0 0
0 0 0 �1 3 �1 0 0
�1 0 0 0 �1 2 0 �1
0 �1 0 0 0 0 4 0
0 �1 1 0 0 �1 0 3

1

CCCCCCCCCCA



A Little bit of Harmonic Analysis

Theorem.
Ck(X) = im @k+1 � kerLk � im @⇤k

Therefore, Hk(X) ⇠= ker Lk

A discrete analogue of the Hodge decomposition.



An Example

e1

e2 e3

e4

e5e6

e7e8

ker L1 = h(8, 8, 1, 1, 3, 8, 2, 5)i ⇠= R

1

18

8

8

5

3

2

This recovers              H1(X, R) = R

Weights on edges represents

the corresponding generator.

Note that at each vertex, 

we have inflow = outflow.



Application to Coverage Problem

ker L1 = {0} D ⇢ U If                      then              

That is, if the kernel of      is trivial,

there is no hole in the coverage.

L1

How can we check                  ?ker L1 = {0}



Heat Equation
dx

dt

= �L1xConsider the “heat” ODE 

0-solution is 

globally stable ker L1 = {0}

Therefore, if the solutions of this ODE with 
several distinct initial conditions always 
converges to 0, then we can conclude         . D ⇢ U

(Note that     is positive semi-definite)L1



An Example

H1(R, R) = R2

There should be two

independent solutions



Graph Theoretical Tools  
for Dynamical Systems



Dynamical Systems

Dynamical Systems 

       = phase space + time evolution law

Typically, the phase space is a manifold   .
The time evolution law would be given by:

a differential equation on    (continuous time);
a map             (discrete time) .

M

M
ƒ : M! M



Conley’s Fundamental Theorem
Theorem (Conley). Any dynamical system can be 
decomposed into “chain recurrent sets” and 
“connecting orbits” between them. All the chaotic 
orbits are contained in chain recurrent sets.

Wanted:  
a computational 
approach to this 
decomposition

chaotic

chaotic

chaotic

chaoticA component with no 
outgoing edge is an 

attractor

tame dynamics

non chaotic, 

gradient-like



From Dynamics to Di-Graph
Given a dynamical systems              we 
construct a directed graph        which imitates 

the dynamics of   

f : X ! X

G(f)

f



Automated Analysis for DS

                 The set of periodic points of      is contained in 
the cubes corresponding to cycles of          .
Theorem. ƒ

G(ƒ )

Periodic orbits:

|nvG(ƒ ) := {è 2 G(ƒ ) | !bi-infinitely long path through è}
SccG(ƒ ) := {è 2 G(ƒ ) | !cycle through è}

                 The maximal invariant set of       is contained 
in                        .  The chain recurrent set of       is  
contained in                        .

Theorem.
ƒ| |nvG(ƒ ) |

| SccG(ƒ ) |

ƒ

The maximal invariant set and the chain recurrent set:

Note that this theorem holds regardless of the stability  
of the periodic orbits.



Collapsing G(f) 
Definition. A Conley-Morse graph of a dynamical system       

   is the directed graph obtained from          by 
collapsing each strongly connected component into a 
single vertex and defining the edges by the transitivity 
among each strongly connected components.

ƒ G(ƒ )



Example: 

Nonlinear Leslie Model



Linear Leslie Population Model

Consider a population divided into k generations:

ƒ : Rk ⇤ Rk :

�
⇧⇧⇧⇧⇧⇤

⇧1
⇧2
⇧3
...
⇧k

⇥
⌃⌃⌃⌃⌃⌅
⌅⇤

�
⇧⇧⇧⇧⇧⇤

⌅1⇧1 + ⌅2⇧2 + · · ·+ ⌅k⇧k
p1⇧1
p2⇧2
...

pk�1⇧k�1

⇥
⌃⌃⌃⌃⌃⌅

�⇥

⇥�
p⇥

      : the number of individuals in the i-th generation
: the probability that an individual in the i-th  
  generation survives for one generation

      : the fertility of the i-th generation



Nonlinear Leslie Model

Consider a population divided into k generations:

�⇥

⇥�
p⇥

      : the number of individuals in the i-th generation
: the probability that an individual in the i-th  
generation survives for one generation

      : the fertility of the i-th generation

�
⇧⇧⇧⇧⇧⇤

⌃1
⌃2
⌃3
...
⌃k

⇥
⌃⌃⌃⌃⌃⌅
⌅⇤

�
⇧⇧⇧⇧⇧⇤

(⌅1⌃1 + ⌅2⌃2 + · · ·+ ⌅k⌃k) · e�⇧(⌃1+⌃2+···+⌃k)
p1⌃1
p2⌃2
...

pk�1⌃k�1

⇥
⌃⌃⌃⌃⌃⌅



Multiple Coexisting Attractors
Chaotic dynamics of a nonlinear population model 1705

Figure 20. Bifurcation of closed curves to strange attractor. (a) f = 66; (b) f = 66.7; (c) f = 67;
(d) f = 67.084; (e) f = 68.2; ( f ) f = 74.

Figure 21. Periodic orbits coexist with T 2-invariant curves. (a) A period-52 attracting orbit appears
off the invariant curves at f = 66.5, after a saddle-node bifurcation. (b) A period-48 attracting
orbit appears off the invariant curves at f = 66.935, after a saddle-node bifurcation.

loops are destroyed in a boundary crisis at f = 67.99 (they collide with a period-48 saddle
orbit). The period-52 stable orbit starts a period doubling cascade at f = 67.7 (figure 23(b)).
After the period doubling limit, a 2 × 52-piece Hénon-like transitive strange attractor is born
(figure 25(a)).

Ugarcovich-Weiss, Nonlinearity 17 (2004)



Qualitative Questions
Q. When is a dynamical system has multiple 

attractors?

Want. We want to construct automatic and 
rigorous methods which can answer these 

“qualitative questions”.

Conventional Method: bifurcation analysis
too many parameters
too many ways to chaos

Q. When is a dynamical system chaotic?

few (and sometimes poor) postdocs…



Conley-Mose Graph

22 Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka, and P. Pilarczyk

p2 : origin

p1 : 0

p0 : 0 {1}

6. The Conley-Morse graph CMG(6) and the setsM(p) at the box (11, 11).

p3 : origin

p1 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p2 : 2 {1}

p0 : 0 {-0.5-0.866i, -0.5+0.866i, 1}

7. The Conley-Morse graph CMG(7) and the setsM(p) at the box (31, 22).

p2 : origin

p1 : 0

p0 : 0 {1}

8. The Conley-Morse graph CMG(8) and the setsM(p) at the box (27, 39).



Conley Morse Graph

Databases for the Global Dynamics of Multiparameter Systems 19

Thus, it is easy to see the sets Q(j) ⇥ Q which define the parameter values for which
the Conley-Morse graphs are valid.

Fig. 5.2. Continuation diagram computed for the two-dimensional Leslie population model
with �1 ⇤ [8, 37], �2 ⇤ [3, 50], p = 0.7. Grid sizes: 50 ⇥ 50 in the parameter space for (�1, �2), and
4096⇥ 4096 in the phase space [�0.001, 320.056]⇥ [�0.001, 224.040].

The Conley-Morse graphs associated to the continuation classes, which are the
basic items of the database, are shown in the next subsection.

5.1. Catalog of continuation classes. This section contains a list of Conley-
Morse graphs and Morse decompositions at selected parameter boxes for all the con-
tinuation classes found for the two-dimensional Leslie model with two varying param-
eters, as discussed above.

Recall that each node in a Conley-Morse graph is labeled

pk : n ⇤ {�}

where k labels the Morse set, {�} indicates the nonzero eigenvalues, and n indicates
the level of homology of the index map on which these eigenvalues arise. If the k-th
Morse set has no nonzero eigenvalues then we write

pk : 0 .

Since, as indicated in Remark 5.2, the origin is an exceptional Morse set, we
indicate it with a shaded box and do not include any index information. The boxes
are color coded to match the combinatorial Morse sets that are shown in the right
panel.

We do not consider the figures showing the combinatorial Morse sets to be part
of the database for the following reasons:

1. The boxes that make up the combinatorial Morse sets will, in general, be
di�erent for each Q ⌅ Q.

Represent the phase space 
structure using directed graph 

called Conley-Morse Graph

Classify the parameter values

according to the discretized


dynamical information to obtain 
“bifurcation diagram”

chaotic

 invariant


set

discretized 

algebraic 


information

Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow,

H. Oka and P. Pilarczyk


“A database schemat for the analysis of global 
dynamics of multiparameter systems”


SIAM J. Appl. Dyn. Sys. 8 (2009)



Continuation Graph (2D)
Adjacency data of the decomposition of the 
parameter space can be expressed by continuation 
graphs.

Edges of the continuation graph correspond to 
“bifurcation curves” in the parameter space.

Databases for the Global Dynamics of Multiparameter Systems 19

Thus, it is easy to see the sets Q(j) ⇥ Q which define the parameter values for which
the Conley-Morse graphs are valid.

Fig. 5.2. Continuation diagram computed for the two-dimensional Leslie population model
with �1 ⇤ [8, 37], �2 ⇤ [3, 50], p = 0.7. Grid sizes: 50 ⇥ 50 in the parameter space for (�1, �2), and
4096⇥ 4096 in the phase space [�0.001, 320.056]⇥ [�0.001, 224.040].

The Conley-Morse graphs associated to the continuation classes, which are the
basic items of the database, are shown in the next subsection.

5.1. Catalog of continuation classes. This section contains a list of Conley-
Morse graphs and Morse decompositions at selected parameter boxes for all the con-
tinuation classes found for the two-dimensional Leslie model with two varying param-
eters, as discussed above.

Recall that each node in a Conley-Morse graph is labeled

pk : n ⇤ {�}

where k labels the Morse set, {�} indicates the nonzero eigenvalues, and n indicates
the level of homology of the index map on which these eigenvalues arise. If the k-th
Morse set has no nonzero eigenvalues then we write

pk : 0 .

Since, as indicated in Remark 5.2, the origin is an exceptional Morse set, we
indicate it with a shaded box and do not include any index information. The boxes
are color coded to match the combinatorial Morse sets that are shown in the right
panel.

We do not consider the figures showing the combinatorial Morse sets to be part
of the database for the following reasons:

1. The boxes that make up the combinatorial Morse sets will, in general, be
di�erent for each Q ⌅ Q.



Continuation Graph (3D)

Class 1

[80265 boxes]

Class 2

[68433 boxes]

Class 3

[25038 boxes]

Class 4

[19598 boxes]

Class 5

[18203 boxes]

Class 6

[17256 boxes]

Class 7

[16686 boxes]

Class 8

[4981 boxes]

Class 9

[2476 boxes]

Class 10

[1370 boxes]

Class 11

[477 boxes]

Class 12

[289 boxes]

Class 13

[217 boxes]

Class 14

[199 boxes]

Class 15

[137 boxes]

Class 16

[96 boxes]

Class 17

[84 boxes]

Class 18

[42 boxes]

Class 19

[27 boxes]

Class 20

[21 boxes]

Class 21

[10 boxes]
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[5 boxes]
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Example: Engine cooling jacket 1

By Courtesy of Andrzej Szymczak



Example: Engine cooling jacket 2

By Courtesy of Andrzej Szymczak



Pseudo Lyapunov Function



Failure of CM Decomposition
CM decomposition might be trivial when


the resolution is not fine enough…

the noise is too large…

there is no gradient structure

A good decomposition
unbounded noiselow resolution



Pseudo Lyapunov Function
We want to construct a combinatorial analog of 
Lyapunov function, which is a map

such that for each edge               , the value 
of the map is very likely to increase along   . 

s : V ! R

e = (�, j) 2 E
e

Precisely, we want to find    that minimizes


where             is the adjacent matrix and         

                      is defined bygr�d s : V ⇥ V ! R

A = (A�j)

s

(gr�d s)(�, j) := s( j) � s(�).

X

(�,j)2E
((gr�d s)(�, j) � A�j)2.



Combinatorial Hodge Decomposition
Using the combinatorial Hodge decomposition 
(Jiang-Lim-Yao 2011), we can show that the 
normal equation for this minimizing problem is


where     is the graph Laplacian and 
�0s = �div A

�0

(div A)(�) =
X

j:(�,j)2E
A�j .

s = ��†0div A
Thus our minimizer can be written as


where    indicates Moore-Penrose pseudoinverse.†



Results
unbounded noiselow resolutionoriginal


