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Coding theory

Linear code Linear subspace C C Fg of dimension k.

Generator matrix Some k x n matrix G whose rows span C.

Example

The [7,4] Hamming code over F has generator matrix

1000110
G — 0100101
0010011
0001111



Codes are equivalent if generator matrices are the same up to

left multiplication by nonsingular k x k matrix over [
(i.e., same rowspace);

permutation of columns;

multiplication of column by element of Fy.



Codes are equivalent if generator matrices are the same up to

left multiplication by nonsingular k x k matrix over [
(i.e., same rowspace);

permutation of columns;

multiplication of column by element of Fy.

We restrict to projective codes: they have generator matrix where
no column is zero;
no column is a multiple of another column.

So, all columns coordinatize a different projective point.



The number of nonzero coordinates in a vector.

For linear codes: minimum distance = minimum nonzero weight.



Weight enumeration

Weight The number of nonzero coordinates in a vector.

For linear codes: minimum distance = minimum nonzero weight.

Weight enumerator
n
We(X,Y) =) AgX""y™”
w=0

where A,, = number of words of weight w.



Weight enumeration

Example

The [7,4] Hamming code over Fy has generator matrix

1000110
G- 01 001P01
0010011
0001111

The weight enumerator is equal to

We(X,Y)=XT+7X4Y3 4 7X3v4 1 v7.



[n, k] code C ® Fgm over some extension field Fgm
generated by the words of C.

All extension codes of C have generator matrix G.



Weight enumeration

Extension code [n, k] code C ® [Fgm over some extension field Fgm
generated by the words of C.

Generator matrix All extension codes of C have generator matrix G.

Extended weight enumerator
n
We(X, Y, T)=> Au(T)X"¥ Y™,
w=0

where A, (g™) = number of words of weight w in C ® Fgm.

Fact: the A, (T) are polynomials of degree at most k.



Weight enumeration

The [7,4] Hamming code has extended weight enumerator

We(X,Y,T) = X'+
7(T -1)X*Y3 +
7(T-1)X3y* +
21(T —1)(T —2)X2Y5 +
7(T —1)(T —2)(T - 3)XY® +
(T—-1)(T3—6T2+15T —13)Y’



The extended weight enumerator is interesting because:
Determines the probability of undetected error in error-detection.

Determines the probability of decoding error in bounded distance
decoding.

Connection to Tutte polynomial in matroid theory.
Connection to zeta function of (algebraic geometric) codes.

...and of course because it is an invariant of linear codes.



] = 0

1xk kxn 1xn
message m generator matrix G codeword ¢



Weight enumeration

= 0
1xk k xn 1xn
message m  generator matrix G codeword ¢

¢; =0 <= m lies in hyperplane H;

Weight enumeration = counting points in (intersections of) hyperplanes.



Codes and hyperplane arrangements

Columns of a generator matrix G of a linear [n, k] code form a linear
hyperplane arrangement in IF’(;. Notation: (Hy,..., Hy).

o One-to-one correspondence between equivalence classes.
o Independent of choice of G, so notation: Ac.
o Also valid over an extension field Fg'.

Theorem

Aw(T) = number of points from vectorspace over field of T elements
that are on n — w hyperplanes.



Codes and hyperplane arrangements

Example

Let g > 2 and C generated by

110000
G=|011110 |,
011 a01
where a # 0, 1.

The extended weights are given by
Ao(T) =1

The zero word is on all hyperplanes.



Codes and hyperplane arrangements

Example

Let g > 2 and C generated by

==
= = O
o = O

1
G=10
0

v = O

where a # 0, 1.

The extended weights are given by
Ai(T)=0

No points are on 5 hyperplanes.



Codes and hyperplane arrangements

Example

Let g > 2 and C generated by

==
= = O
o = O

1
G=10
0

v = O

where a # 0, 1.

The extended weights are given by
A(T)=T-1

One projective point is on 4 hyperplanes.



Codes and hyperplane arrangements

Example

Let g > 2 and C generated by

==
= = O
o = O

1
G=10
0

v = O

where a # 0, 1.

The extended weights are given by
As(T)=T-1

One projective point is on 3 hyperplanes.



Codes and hyperplane arrangements

Example

Let g > 2 and C generated by

110000
G=|011110 |,
011 a01
where a # 0, 1.

As(T) = 6(T — 1)

Six projective points are on 2 hyperplanes.



Codes and hyperplane arrangements

Example

Let g > 2 and C generated by

110000
G=(011110 |,
011 a01
where a # 0, 1.

The extended weights are given by
As(T)=(6(T+1)—1-4—-1-3—-6-2)(T—-1)=(6T —13)(T —1)

Six lines with T 4 1 points; minus the points counted before.



Codes and hyperplane arrangements

Example

Let g > 2 and C generated by

110000
G=|011110 |,
011 a01
where a # 0, 1.

The extended weights are given by
Ao(T) = (T —1)(T =2)(T —3)

The total number of projective points is T2 + T + 1.



To formalize this counting, we use the geometric lattice associated to
the arrangement. Notation: L.

All intersections of hyperplanes
x<yifyCx

Whole space IF’;

Zero vector 0 € Fs
Codimension of x in FZ

The hyperplanes of the arrangement



Geometric lattice

123456 / % i

123 14 15 16 24 25 26 3456

RS
\\//

Example



Geometric lattice

Mobius function

For all x <y, we have p(x,x) =1 and

Yo owmloz)= Y m(zy)=0
x<z<y x<z<y

Characteristic polynomial

X(T) =Y n(0,) 7=

x€eL



Coboundary polynomial

Coboundary polynomial

The coboundary of a geometric lattice is defined by

xL(S,T) = Z Z r(x, y)Sa(X) 7r(D)—=r(y)

xel x<yelL
where a(x) is the number of atoms smaller then x.
We write:
(S, T)= Zs'x, ,owith xi(T) = Y xpay(T):

xeL
a(x)=i



Coboundary polynomial

Theorem

Xi(T) = An-i(T)

Proof:
For every point in Iﬁ‘gm there is a unique biggest element of L that
contains the point.
An—i(g™) = number of points in Fsm on exactly i hyperplanes
= Z number of points in Fgm in x but not in any y > x

xel
a(x)=i



Well-known fact:

x.(g™) = number of points in Fgm not in the arrangement

= number of points in Fzm in 0 but not in any y > 0

This means that:

An—i(@™) = Z number of points in Fgm in x but not in any y > x

xel
a(x)=i

= Z X[Xyi](qm)

x€eL
a(x)=i

= xi(q™)

So by interpolation, x;(T) = A,_i(T).



Codes are linear subspaces of Fg.

Extending the underlying field gives extension codes C ® Fgm, and
we define the extended weight enumerator W¢(X, Y, T).

By viewing the columns of G as hyperplanes, we associate an
arrangement to a code.

Finding the extended weight enumerator means counting points in
intersections of hyperplanes.

This counting can be done using the geometric lattice associated
with the arrangement.

The coboundary polynomial is equivalent to the extended weight
enumerator.



Translation of the code by a vector y € Fg.
The minimum weight of all vectors in the coset.

A vector of minimum weight in the coset.



Coset leader weight enumerator

Coset Translation of the code by a vector y € Fg.
Weight The minimum weight of all vectors in the coset.

Coset leader A vector of minimum weight in the coset.

Extended coset leader weight enumerator

The homogeneous polynomial counting the number of cosets of a given
weight “for all extension codes”, notation:

n
ac(X,Y, T)=> ai(T)X"7Y".
i=0

Note that we have ac(X, Y, q") = acerp(X, Y).



The extended coset leader weight enumerator is interesting because:

Determines the probability of correct decoding in coset leader
decoding.

Determines the average of changed symbols in steganography
(information hiding).

Not determined by the extended weight enumerator.

...and of course because they are invariants of linear codes.



(n — k) x n matrix H such that GH™ = 0.
The vector s = HyT, zero for codewords.

Minimal number of columns whose span contains s.



(n — k) x n matrix H such that GH™ = 0.
The vector s = HyT, zero for codewords.

Minimal number of columns whose span contains s.

Isomorphism between cosets and syndromes, because

H(y +¢)" = Hy" + Hc™ = HyT.

Syndrome weight is equal to corresponding coset weight (weight of
coset leader).

«; is the number of vectors that are in the span of / columns of H
but not in the span of i — 1 columns of H.



n-tuple of points in PX=1(F,).
Columns of a generator matrix G of a linear [n, k] code form a projective
system. Notation: (P1, ..., Pp).
One-to-one correspondence between equivalence classes.
Independent of choice of G, so notation: Pc.

Also valid over an extension field IF;”.



n-tuple of points in PX=1(F,).
Columns of a generator matrix G of a linear [n, k] code form a projective
system. Notation: (P1, ..., Pp).
One-to-one correspondence between equivalence classes.
Independent of choice of G, so notation: Pc.

Also valid over an extension field IF;”.

Projective systems are the geometric duals of hyperplane arrangements.
Both induce the same geometric lattice.



Determination of coset weights

The [7, 4] binary Hamming code has
parity check matrix

1101
H={( 1011
0111

O O =

0 0
10
01
«j = # vectors in span of i columns
but not in span of i — 1 columns
The extended coset leader weights are given by
ao(T) =1

The code itself.



Determination of coset weights

The [7, 4] binary Hamming code has
parity check matrix

1101
H={( 1011
0111

O O =

0 0
10
01
«j = # vectors in span of i columns
but not in span of i — 1 columns
The extended coset leader weights are given by
a1 (T)=7(T - 1)

Seven projective points.



Determination of coset weights

The [7, 4] binary Hamming code has
parity check matrix

1101
H={( 1011
0111

O O =

0 0
10
01
«j = # vectors in span of i columns
but not in span of i — 1 columns
The extended coset leader weights are given by
az(T) =7(T - 1)(T - 2)

(T 4+ 1) — 3 extra points on 7 projective lines.



Determination of coset weights

Example

The [7, 4] binary Hamming code has
parity check matrix

1101
H={( 1011
0111

O O =

0 0
10
01
«j = # vectors in span of i columns
but not in span of i — 1 columns
The extended coset leader weights are given by
az(T) = (T —1)(T —2)(T — 4)

ao(T) + a1(T) + az(T) + a3(T) = T3 total number of cosets.



Determination of coset weights

How to formalize this counting?

Example (continued)

The geometric lattice associated to the [7,4] binary Hamming code is
visualized by

abcdefg

I

abc

\‘//




Determination of coset weights

Example

1 coset with 3 cosets with
3 coset leaders 2 leaders each

Projective systems with equal geometric lattices may have different coset
leader weight enumerators!



Start with [n, k] code.
Consider the projective system Pc.

Look at all hyperplanes spanned by k — 1 points of Pc.
(Ignore k — 1 points that span spaces of lower dimension.)

Remove (multiple) copies of hyperplanes.
These hyperplanes form an arrangement A.
The derived code D(C) is the code such that A = Apc).



Derived code




Derived code

Example




The lattice of Pc, upside-down, is contained in the lattice of Ap(c).
This gives an injection ¢ : L(Pc) < L(Ap(c))-

All elements that are not in the image )(L(Pc¢)) should be counted
similar to the largest element below it that is in ¢ (L(Pc)).
Therefore, define r*(x) = max{r(y) : y € ¥(L(Pc)),y < x}.



Extended coset leader weight enumerator

The lattice of Pc, upside-down, is contained in the lattice of Ap(c).
This gives an injection ¢ : L(Pc) — L(Ap(c))-

All elements that are not in the image ¥(L(Pc¢)) should be counted
similar to the largest element below it that is in ¥)(L(Pc)).
Therefore, define r*(x) = max{r(y) : y € ¥(L(Pc)),y < x}.

The extended coset leader weight enumerator is equal to

R A
x,y€L(Ap(c))



The extended coset leader weight enumerator is an important
invariant of linear codes.

Determining coset weights is equivalent to counting points in spans
of points.

Counting points can be formalized by using the geometric lattice of
the derived code.



Are there other counting problems that use the derived
arrangement?

Does the extended coset leader weight enumerator determine the
extended weight enumerator?

Can we define a derived lattice?

Taking D(D(D(---(C)---))) eventually gives all hyperplanes in
PA=1(F,). How fast?

Dependencies between dependencies are known as second order
syzygies in computational geometry. Can this interpretation help?

Can we determine ac(X, Y, T) for concrete classes of codes?
(For example: generalized Reed-Solomon codes)

Can we classify codes using their coset leader weight enumerator?



Thank you for your attention.



