Application of hyperplane arrangements to error-correcting codes

Dr. Relinde Jurrius
(joint work with Dr. Ruud Pellikaan)

University of Neuchâtel, Switzerland
December 21, 2016

Coding theory

Linear code Linear subspace $C \subseteq \mathbb{F}_{q}^{n}$ of dimension k. Generator matrix Some $k \times n$ matrix G whose rows span C.

Example

The [7, 4] Hamming code over \mathbb{F}_{2} has generator matrix

$$
G=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Coding theory

Codes are equivalent if generator matrices are the same up to

- left multiplication by nonsingular $k \times k$ matrix over \mathbb{F}_{q} (i.e., same rowspace);
- permutation of columns;
- multiplication of column by element of \mathbb{F}_{q}^{*}.

Coding theory

Codes are equivalent if generator matrices are the same up to

- left multiplication by nonsingular $k \times k$ matrix over \mathbb{F}_{q} (i.e., same rowspace);
- permutation of columns;
- multiplication of column by element of \mathbb{F}_{q}^{*}.

We restrict to projective codes: they have generator matrix where

- no column is zero;
- no column is a multiple of another column.

So, all columns coordinatize a different projective point.

Weight enumeration

Weight The number of nonzero coordinates in a vector.

For linear codes: minimum distance $=$ minimum nonzero weight.

Weight enumeration

Weight The number of nonzero coordinates in a vector.

For linear codes: minimum distance $=$ minimum nonzero weight.

Weight enumerator

$$
W_{C}(X, Y)=\sum_{w=0}^{n} A_{w} X^{n-w} Y^{w}
$$

where $A_{w}=$ number of words of weight w.

Weight enumeration

Example

The $[7,4]$ Hamming code over \mathbb{F}_{2} has generator matrix

$$
G=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

The weight enumerator is equal to

$$
W_{C}(X, Y)=X^{7}+7 X^{4} Y^{3}+7 X^{3} Y^{4}+Y^{7}
$$

Weight enumeration

Extension code $[n, k]$ code $C \otimes \mathbb{F}_{q^{m}}$ over some extension field $\mathbb{F}_{q^{m}}$ generated by the words of C.
Generator matrix All extension codes of C have generator matrix G.

Weight enumeration

Extension code $[n, k]$ code $C \otimes \mathbb{F}_{q^{m}}$ over some extension field $\mathbb{F}_{q^{m}}$ generated by the words of C.
Generator matrix All extension codes of C have generator matrix G.

Extended weight enumerator

$$
W_{C}(X, Y, T)=\sum_{w=0}^{n} A_{w}(T) X^{n-w} Y^{w}
$$

where $A_{w}\left(q^{m}\right)=$ number of words of weight w in $C \otimes \mathbb{F}_{q^{m}}$.
Fact: the $A_{w}(T)$ are polynomials of degree at most k.

Weight enumeration

Example

The [7, 4] Hamming code has extended weight enumerator

$$
\begin{aligned}
W_{C}(X, Y, T)= & X^{7}+ \\
& 7(T-1) X^{4} Y^{3}+ \\
& 7(T-1) X^{3} Y^{4}+ \\
& 21(T-1)(T-2) X^{2} Y^{5}+ \\
& 7(T-1)(T-2)(T-3) X Y^{6}+ \\
& (T-1)\left(T^{3}-6 T^{2}+15 T-13\right) Y^{7}
\end{aligned}
$$

Why do we study this?

The extended weight enumerator is interesting because:

- Determines the probability of undetected error in error-detection.
- Determines the probability of decoding error in bounded distance decoding.
- Connection to Tutte polynomial in matroid theory.
- Connection to zeta function of (algebraic geometric) codes.
... and of course because it is an invariant of linear codes.

Weight enumeration

Weight enumeration

Theorem

$$
c_{j}=0 \Longleftrightarrow \mathbf{m} \text { lies in hyperplane } H_{j}
$$

Weight enumeration $=$ counting points in (intersections of) hyperplanes.

Codes and hyperplane arrangements

Columns of a generator matrix G of a linear $[n, k]$ code form a linear hyperplane arrangement in \mathbb{F}_{q}^{k}. Notation: $\left(H_{1}, \ldots, H_{n}\right)$.

- One-to-one correspondence between equivalence classes.
- Independent of choice of G, so notation: \mathcal{A}_{C}.
- Also valid over an extension field \mathbb{F}_{q}^{m}.

Theorem

$A_{w}(T)=$ number of points from vectorspace over field of T elements that are on $n-w$ hyperplanes.

Codes and hyperplane arrangements

Example

Let $q>2$ and C generated by

$$
G=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & a & 0 & 1
\end{array}\right)
$$

where $a \neq 0,1$.

The extended weights are given by

$$
A_{0}(T)=1
$$

The zero word is on all hyperplanes.

Codes and hyperplane arrangements

Example

Let $q>2$ and C generated by

$$
G=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & a & 0 & 1
\end{array}\right)
$$

where $a \neq 0,1$.

The extended weights are given by

$$
A_{1}(T)=0
$$

No points are on 5 hyperplanes.

Codes and hyperplane arrangements

Example

Let $q>2$ and C generated by

$$
G=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & a & 0 & 1
\end{array}\right)
$$

where $a \neq 0,1$.

The extended weights are given by

$$
A_{2}(T)=T-1
$$

One projective point is on 4 hyperplanes.

Codes and hyperplane arrangements

Example

Let $q>2$ and C generated by

$$
G=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & a & 0 & 1
\end{array}\right)
$$

where $a \neq 0,1$.

The extended weights are given by

$$
A_{3}(T)=T-1
$$

One projective point is on 3 hyperplanes.

Codes and hyperplane arrangements

Example

Let $q>2$ and C generated by

$$
G=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & a & 0 & 1
\end{array}\right)
$$

where $a \neq 0,1$.

The extended weights are given by

$$
A_{4}(T)=6(T-1)
$$

Six projective points are on 2 hyperplanes.

Codes and hyperplane arrangements

Example

Let $q>2$ and C generated by

$$
G=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & a & 0 & 1
\end{array}\right)
$$

where $a \neq 0,1$.

The extended weights are given by

$$
A_{5}(T)=(6(T+1)-1 \cdot 4-1 \cdot 3-6 \cdot 2)(T-1)=(6 T-13)(T-1)
$$

Six lines with $T+1$ points; minus the points counted before.

Codes and hyperplane arrangements

Example

Let $q>2$ and C generated by

$$
G=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & a & 0 & 1
\end{array}\right)
$$

where $a \neq 0,1$.

The extended weights are given by

$$
A_{6}(T)=(T-1)(T-2)(T-3)
$$

The total number of projective points is $T^{2}+T+1$.

Geometric lattice

To formalize this counting, we use the geometric lattice associated to the arrangement. Notation: L.

Elements All intersections of hyperplanes
Ordering $x \leq y$ if $y \subseteq x$
Minimum Whole space \mathbb{F}_{q}^{k}
Maximum Zero vector $\mathbf{0} \in \mathbb{F}_{q}^{k}$
Rank Codimension of x in \mathbb{F}_{q}^{k}
Atoms The hyperplanes of the arrangement

Geometric lattice

Example

Geometric lattice

Möbius function

For all $x \leq y$, we have $\mu_{L}(x, x)=1$ and

$$
\sum_{x \leq z \leq y} \mu_{L}(x, z)=\sum_{x \leq z \leq y} \mu_{L}(z, y)=0
$$

Characteristic polynomial

$$
\chi_{L}(T)=\sum_{x \in L} \mu_{L}(\hat{0}, x) T^{r(L)-r(x)}
$$

Coboundary polynomial

Coboundary polynomial

The coboundary of a geometric lattice is defined by

$$
\chi_{L}(S, T)=\sum_{x \in L} \sum_{x \leq y \in L} \mu_{L}(x, y) S^{a(x)} T^{r(L)-r(y)}
$$

where $a(x)$ is the number of atoms smaller then x.
We write:

$$
\chi_{L}(S, T)=\sum_{i=0}^{n} S^{i} \chi_{i}(T), \quad \text { with } \quad \chi_{i}(T)=\sum_{\substack{x \in L \\ a(x)=i}} \chi_{[x, \hat{1}]}(T)
$$

Coboundary polynomial

Theorem

$$
\chi_{i}(T)=A_{n-i}(T)
$$

Proof:

For every point in $\mathbb{F}_{q^{m}}^{k}$ there is a unique biggest element of L that contains the point.
$A_{n-i}\left(q^{m}\right)=$ number of points in $\mathbb{F}_{q^{m}}^{k}$ on exactly i hyperplanes
$=\sum_{\substack{x \in L \\ a(x)=i}}$ number of points in $\mathbb{F}_{q^{m}}^{k}$ in x but not in any $y>x$

Coboundary polynomial

Well-known fact:

$$
\begin{aligned}
\chi_{L}\left(q^{m}\right) & =\text { number of points in } \mathbb{F}_{q^{m}}^{k} \text { not in the arrangement } \\
& =\text { number of points in } \mathbb{F}_{q^{m}}^{k} \text { in } \hat{0} \text { but not in any } y>\hat{0}
\end{aligned}
$$

This means that:

$$
\begin{aligned}
A_{n-i}\left(q^{m}\right) & =\sum_{\substack{x \in L \\
a(x)=i}} \text { number of points in } \mathbb{F}_{q^{m}}^{k} \text { in } x \text { but not in any } y>x \\
& =\sum_{\substack{x \in L \\
a(x)=i}} \chi_{[x, \hat{1}]}\left(q^{m}\right) \\
& =\chi_{i}\left(q^{m}\right)
\end{aligned}
$$

So by interpolation, $\chi_{i}(T)=A_{n-i}(T)$.

Summary so far

- Codes are linear subspaces of \mathbb{F}_{q}^{n}.
- Extending the underlying field gives extension codes $C \otimes \mathbb{F}_{q^{m}}$, and we define the extended weight enumerator $W_{C}(X, Y, T)$.
- By viewing the columns of G as hyperplanes, we associate an arrangement to a code.
- Finding the extended weight enumerator means counting points in intersections of hyperplanes.
- This counting can be done using the geometric lattice associated with the arrangement.
- The coboundary polynomial is equivalent to the extended weight enumerator.

Coset leader weight enumerator

Coset Translation of the code by a vector $\mathbf{y} \in \mathbb{F}_{q}^{n}$.
Weight The minimum weight of all vectors in the coset.
Coset leader A vector of minimum weight in the coset.

Coset leader weight enumerator

Coset Translation of the code by a vector $\mathbf{y} \in \mathbb{F}_{q}^{n}$.
Weight The minimum weight of all vectors in the coset.
Coset leader A vector of minimum weight in the coset.

Extended coset leader weight enumerator

The homogeneous polynomial counting the number of cosets of a given weight "for all extension codes", notation:

$$
\alpha_{C}(X, Y, T)=\sum_{i=0}^{n} \alpha_{i}(T) X^{n-i} Y^{i}
$$

Note that we have $\alpha_{C}\left(X, Y, q^{m}\right)=\alpha_{C \otimes \mathbb{F}_{q}^{m}}(X, Y)$.

Why do we study this?

The extended coset leader weight enumerator is interesting because:

- Determines the probability of correct decoding in coset leader decoding.
- Determines the average of changed symbols in steganography (information hiding).
- Not determined by the extended weight enumerator.
... and of course because they are invariants of linear codes.

Determination of coset weights

Parity check matrix $(n-k) \times n$ matrix H such that $G H^{T}=0$. Syndrome of y The vector $\mathbf{s}=H \mathbf{y}^{\top}$, zero for codewords. Syndrome weight Minimal number of columns whose span contains s.

Determination of coset weights

Parity check matrix $(n-k) \times n$ matrix H such that $G H^{T}=0$.
Syndrome of y The vector $\mathbf{s}=H \mathbf{y}^{T}$, zero for codewords.
Syndrome weight Minimal number of columns whose span contains s.

- Isomorphism between cosets and syndromes, because $H(\mathbf{y}+\mathbf{c})^{T}=H \mathbf{y}^{\top}+H \mathbf{c}^{T}=H \mathbf{y}^{\top}$.
- Syndrome weight is equal to corresponding coset weight (weight of coset leader).
- α_{i} is the number of vectors that are in the span of i columns of H but not in the span of $i-1$ columns of H.

Projective systems

Projective system n-tuple of points in $\mathbb{P}^{k-1}\left(\mathbb{F}_{q}\right)$.
Columns of a generator matrix G of a linear $[n, k]$ code form a projective system. Notation: $\left(P_{1}, \ldots, P_{n}\right)$.

- One-to-one correspondence between equivalence classes.
- Independent of choice of G, so notation: \mathcal{P}_{C}.
- Also valid over an extension field \mathbb{F}_{q}^{m}.

Projective systems

Projective system n-tuple of points in $\mathbb{P}^{k-1}\left(\mathbb{F}_{q}\right)$.
Columns of a generator matrix G of a linear $[n, k]$ code form a projective system. Notation: $\left(P_{1}, \ldots, P_{n}\right)$.

- One-to-one correspondence between equivalence classes.
- Independent of choice of G, so notation: \mathcal{P}_{C}.
- Also valid over an extension field \mathbb{F}_{q}^{m}.

Projective systems are the geometric duals of hyperplane arrangements. Both induce the same geometric lattice.

Determination of coset weights

Example

The [7, 4] binary Hamming code has parity check matrix

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

$\alpha_{i}=\#$ vectors in span of i columns but not in span of $i-1$ columns

The extended coset leader weights are given by

$$
\alpha_{0}(T)=1
$$

The code itself.

Determination of coset weights

Example

The [7, 4] binary Hamming code has parity check matrix

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

$\alpha_{i}=\#$ vectors in span of i columns but not in span of $i-1$ columns

The extended coset leader weights are given by

$$
\alpha_{1}(T)=7(T-1)
$$

Seven projective points.

Determination of coset weights

Example

The [7, 4] binary Hamming code has parity check matrix

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

$\alpha_{i}=\#$ vectors in span of i columns but not in span of $i-1$ columns

The extended coset leader weights are given by

$$
\alpha_{2}(T)=7(T-1)(T-2)
$$

$(T+1)-3$ extra points on 7 projective lines.

Determination of coset weights

Example

The [7, 4] binary Hamming code has parity check matrix

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

$\alpha_{i}=\#$ vectors in span of i columns but not in span of $i-1$ columns

The extended coset leader weights are given by

$$
\alpha_{3}(T)=(T-1)(T-2)(T-4)
$$

$\alpha_{0}(T)+\alpha_{1}(T)+\alpha_{2}(T)+\alpha_{3}(T)=T^{3}$ total number of cosets.

Determination of coset weights

How to formalize this counting?

Example (continued)

The geometric lattice associated to the [7, 4] binary Hamming code is visualized by

Determination of coset weights

Example

1 coset with
3 coset leaders

3 cosets with
2 leaders each

Projective systems with equal geometric lattices may have different coset leader weight enumerators!

Derived code

- Start with [n, k] code.
- Consider the projective system \mathcal{P}_{C}.
- Look at all hyperplanes spanned by $k-1$ points of \mathcal{P}_{C}. (Ignore $k-1$ points that span spaces of lower dimension.)
- Remove (multiple) copies of hyperplanes.
- These hyperplanes form an arrangement \mathcal{A}.
- The derived code $D(C)$ is the code such that $\mathcal{A}=\mathcal{A}_{D(C)}$.

Derived code

Example

Derived code

Example

Extended coset leader weight enumerator

- The lattice of \mathcal{P}_{C}, upside-down, is contained in the lattice of $\mathcal{A}_{D(C)}$.
- This gives an injection $\psi: L\left(\mathcal{P}_{C}\right) \hookrightarrow L\left(\mathcal{A}_{D(C)}\right)$.
- All elements that are not in the image $\psi\left(L\left(\mathcal{P}_{C}\right)\right)$ should be counted similar to the largest element below it that is in $\psi\left(L\left(\mathcal{P}_{C}\right)\right)$.
- Therefore, define $r^{*}(x)=\max \left\{r(y): y \in \psi\left(L\left(\mathcal{P}_{C}\right)\right), y \leq x\right\}$.

Extended coset leader weight enumerator

- The lattice of \mathcal{P}_{C}, upside-down, is contained in the lattice of $\mathcal{A}_{D(C)}$.
- This gives an injection $\psi: L\left(\mathcal{P}_{C}\right) \hookrightarrow L\left(\mathcal{A}_{D(C)}\right)$.
- All elements that are not in the image $\psi\left(L\left(\mathcal{P}_{C}\right)\right)$ should be counted similar to the largest element below it that is in $\psi\left(L\left(\mathcal{P}_{C}\right)\right)$.
- Therefore, define $r^{*}(x)=\max \left\{r(y): y \in \psi\left(L\left(\mathcal{P}_{C}\right)\right), y \leq x\right\}$.

Theorem

The extended coset leader weight enumerator is equal to

$$
\alpha_{C}(X, Y, T)=\sum_{x, y \in L\left(\mathcal{A}_{D(C)}\right)} \mu(x, y) T^{n-k-r(y)} X^{k+r^{*}(x)} Y^{n-k-r^{*}(x)}
$$

Summary

- The extended coset leader weight enumerator is an important invariant of linear codes.
- Determining coset weights is equivalent to counting points in spans of points.
- Counting points can be formalized by using the geometric lattice of the derived code.

Further questions

- Are there other counting problems that use the derived arrangement?
- Does the extended coset leader weight enumerator determine the extended weight enumerator?
- Can we define a derived lattice?
- Taking $D(D(D(\cdots(C) \cdots)))$ eventually gives all hyperplanes in $\mathbb{P}^{k-1}\left(\mathbb{F}_{q}\right)$. How fast?
- Dependencies between dependencies are known as second order syzygies in computational geometry. Can this interpretation help?
- Can we determine $\alpha_{C}(X, Y, T)$ for concrete classes of codes? (For example: generalized Reed-Solomon codes)
- Can we classify codes using their coset leader weight enumerator?

Thank you for your attention.

